• 제목/요약/키워드: Non-point pollution source (NPS)

검색결과 70건 처리시간 0.025초

도로노면 유출수 처리를 위한 여과에서의 여재별 손실수두 특성 (A study on the headloss of filter media for treatment of Road Runoff)

  • 최원석;송창수;김석구
    • 상하수도학회지
    • /
    • 제22권6호
    • /
    • pp.697-704
    • /
    • 2008
  • Stormwater runoff from urban road area as non-point source has a tendency of including lots of pollutants at initial rain period. Recently, there are several cases of having installed treatment facilities for reducing pollution discharge from the impervious cover in urban area to prevent watershed environment from getting worse. The filtration type among non-point source treatment systems has been known as one of the most efficient system for treatment of non-point source pollutants. Therefore, various kinds of filter media such as expanded polypropylene(EPP), granular activated carbon, zeolite, perlite, illite, sand, gravel has been developed. This study was conducted to verify performance and hydraulic characteristics of filter media as measures for non-point source. The experiment was carried out to evaluate applicability and variation of 4 kind of most popular filter media(EPP, GAC, Zeolite, Perlite) in headloss with elapsed time and influent flow rate and to obtain data base that could be used to establish management plan for road runoff treatment. In experiment by tap water, it showed that EPP and perlite those are floatable materials showed stable operating performance and lower headloss than the others.

농경지 토양유실 및 수질오염물질 유출에 대한 침사구 조성 효과 (The Performances of Sediment Trap for Reducing Water Pollutants and Soil Loss from Rainfall Runoff in Cropland)

  • 박세인;박현진;김한용
    • 한국환경농학회지
    • /
    • 제38권4호
    • /
    • pp.307-313
    • /
    • 2019
  • BACKGROUND: An intensive farming system may be of the most important source for agricultural non-point source (NPS) pollution, which is a major concern for agricultural water management in South Korea. Various management practices have therefore been applied to reduce NPS loads from upland fields. This study presents performances of sediment trap for reducing NPS and soil loss from rainfall runoff in cropland. METHODS AND RESULTS: In 2018 and 2019, three sediment traps (L1.5 m × W1.0 m × D0.5 m = 0.75 ㎥) and their controls were established in the end of sloped (ca. 3%) upland field planted with maize crops. Over the seasons, runoff water was monitored, collected, and analyzed at every runoff. Soils deposited in sediment traps were collected and weighed at the season end. Sediment traps reduced runoff amount (p<0.05) and NPS concentrations, though the decreased NPS concentrations were not always statistically significant. In addition, sediment traps had a significant prevention effect on soil loss from rainfall runoff in a sloped cropland. CONCLUSION: The results suggest that the sediment trap could be a powerful and the best management practice to reduce NPS pollution and soil loss in a sloped upland field.

식생밭두렁과 실트펜스를 이용한 밭 비점오염 저감효과 평가 (Evaluation for Non-Point Sources Reduction Effect by Vegetated Ridge and Silt Fence)

  • 김동현;김상민
    • 한국농공학회논문집
    • /
    • 제57권5호
    • /
    • pp.129-137
    • /
    • 2015
  • The objective of this study was to test the non-point source pollution (NPS) control by the vegetated ridge and silt fence through field monitoring. The experiment plots were established with three sizes which are 5 m width by 22 m length with 8 %, 3 % slope and 15m width by 15 m length with 6 % slope. Flumes with the floating type stage gages were installed at the outlet of each plot to monitor the runoff. For a rainfall monitoring, tipping bucket rain gage was installed within the experiment site. Water quality samples were monitored during the heavy rainfall occurred. The amount of rainfall from 4 monitored events ranged from 27.6 mm to 130 mm. The runoff reduction rate could vary depending on slope, soil, crop growth condition, rainfall amount, rainfall intensity, antecedent moisture condition, and many other factors. The runoff from vegetated ridge and silt fence treatment plots was 24.05 % and -8.28 % lower than that from control plot, respectively. The monitoring results showed that the average pollution loads reduced by vegetated ridge compared to control were BOD 36.62~53.60 %, SS 40.41~73.71 %, COD 39.34~56.41 %, DOC 49.08~53.67 %, TN 26.74~67.23 %, and TP 52.72~91.80 %; by silt fence compared to control were SS 41.73 %, COD 1.93 %, and TN 2.38 %. The paired t-test result indicated that the vegetated ridge and silt fence were statistically significant effect in SS load reduction, with a 5 % significant level. Monitored results indicated that vegetated ridge and silt fence were both effective to reduce the pollutant from the field surface runoff.

식생수로에서 유하시간에 영향을 주는 인자 분석 (Analysis of Factors Affecting Retention Time in Grassed Swale)

  • 백승봉;길경익
    • 한국습지학회지
    • /
    • 제17권3호
    • /
    • pp.303-310
    • /
    • 2015
  • 현재까지 국내에서의 수질관리 정책은 점오염원 관리를 우선시 하고 있다. 점오염원은 관거를 통해 배출지점이 명확한 지점으로 집중적인 유출특성을 보인다. 하지만 비점오염원은 점오염원과 달리 유출경로, 유출량 및 유출특성이 명확하지 않아 관리에 여러 어려움이 있다. 이에 우리나라는 비점오염원을 관리하기 위해서 비점오염저감시설을 개발 및 설치하여 관리해오고 있다. 그러나 비점오염저감시설은 강우에 대한 영향을 받기 때문에 적절한 설계 및 유지관리에 어려운 실정이다. 따라서 적절한 비점오염 저감시설 설계를 위한 저감효율에 영향을 주는 여러 인자에 대한 다각적 연구가 필요하다. 본 연구에서는 자연형 비점오염저감시설인 식생수로에서 저감효율에 영향을 미치는 인자인 강우사상, 식생피도 및 유하시간을 조사하고 상관성 분석을 수행하였다. 식생피도는 수로 내에 Braun-Blanquet(목측법)을 이용하여 피도의 변화를 구하였으며, 유하시간의 경우 강우유출수가 수로로 유입되는 시점부터 첫 유출이 시작되는 시간까지로 구하였다. 또한 상관성 분석은 pearson 상관성 분석법을 이용하여 구하였다. 그 결과 식생수로에서 유하시간이 길수록 저감효율이 증가하고, 식생피도가 높을수록 유하시간이 증가하는 것으로 나타났다.

야채재배 밭에서 지표피복의 비점오염원 저감효과 (Effect of Surface Cover on the Reduction of NPS Pollution at a Vegetable Field)

  • 신민환;장정렬;원철희;최용훈;신재영;임경재;최중대
    • 한국물환경학회지
    • /
    • 제28권3호
    • /
    • pp.436-443
    • /
    • 2012
  • This research was focused on the effect of rice straw and rice straw mat on the reduction of upland field non-point source (NPS) pollution discharges. Six experimental plots of $5{\times}22m$ in size and 3% in slope prepared on gravelly sandy loam soil were treated with control, rice straw cover and rice straw mat cover. Radish in Spring growing seasons were cultivated. NPS pollution discharge was monitored and compared with respect to the treatments. The surface cover rate of rice straw and rice straw mat right after the treatments was 64.7% and 73.7%, respectively. Rainfall of the 16 monitored events ranged from 12.8 mm to 538.2 mm. Runoff coefficient of the events was 0.01~0.67 in control plot, 0~0.63 in rice straw plot and 0~0.45 in rice straw mat plot. The reduction of runoff compared to the control plot was 5.4~99.7% in rice straw plot and 32.9~100% in rice straw mat plot. The reduction of NPS pollution load was 52.0% for SS, 28.5% for T-N and 35.2% for T-P in rice straw plot and 79.8% for SS, 68.3% for T-N and 53.3% for T-P in rice straw mat plot. This research revealed that rice straw mat cover on the soil surface could not only increase the crop yield and farmer's income but also reduce the NPS pollution loads significantly.

경작지에서 볏짚거적의 비점오염물질 저감 평가 (Evaluation of NPS Pollutant Reduction of Rice Straw Mats in Field)

  • 원철희;신민환;최용훈;임경재;한영한;권재혁;최중대
    • 한국농공학회논문집
    • /
    • 제55권4호
    • /
    • pp.37-44
    • /
    • 2013
  • We have examined the effect of rice straw mat (RSM) on the reduction of non-point source (NPS) pollution loads at soybean cultivations. The slope of the experimental plot was about 3 %. Monitoring was carried out for four years at conventional tillage (CT) in 2008~2009 years and RSM covered tillage in 2010~2011 years. Thirty-two rainfall events were monitored and analyzed during the study period. During the 2 years of 2008 and 2009, 20 rainfall runoff events were monitored. But in 2010 years, only 2 rainfall runoff events could be monitored. And in 2011 years, 10 rainfall runoff events was monitored. It was because the RSM cover enhanced infiltration and reduce runoff in 2010 and 2011. Average NPS pollution load (organic matters) of the RSM covered field was reduced by 72.1~94.2 % compared to that of CT field. NPS pollution load of TN and TP reduced by 67.5 % and 55.7 %, respectively. Especially, SS pollution load was reduced by 97.3 %. Based on the results, rice straw mat cover was considered as a promising best management practices (BMP) to reduce NPS pollution load. However, it was recommended that the results are limited to the field conditions and the same experiments must be performed on different soil textures, slopes, and crops if it is applied to the development of policies.

SWAT-REMM을 적용한 수변림 조성에 따른 하천오염부하 저감효과 분석 (Analysis of Pollutant load Reduction Efficiency with Riparian Buffer System Using the SWAT-REMM)

  • 최윤호;류지철;황하선;금동혁;박윤식;정영훈;최중대;임경재
    • 한국물환경학회지
    • /
    • 제31권2호
    • /
    • pp.166-180
    • /
    • 2015
  • Pollutant in watersheds comes from two major sources which are NPS (nonpoint source pollution) and PS (point source pollution). Most of the pollutant can be treated by wastewater treatment plants. However, wastewater treatment plants may not be an appropriate practice to improve water quality for the watersheds with large portion of NPS pollutant and NPS pollution from direct runoff and baseflow has different characteristics. Therefore the practices to improve water quality need to be comprehensive for pollutants by both direct runoff and baseflow. Riparian buffer, one of practices to manage pollutant in watershed, has been applied to reduce pollutant not only from direct runoff but also baseflow. In this study, the scenarios for pollutant reduction by wastewater treat plants and the nitrogen reduction by riparian buffer were simulated using SWAT-REMM to suggest an effective plan for pollutant reduction from baseflow. Riparian buffer provided nitrogen reduction of 0.2~75.0% in YbB watershed and 38.0~47.0% in GbA watershed. The result indicates that riparian buffer is effective to reduce the pollutant especially from baseflow, and it suggested as suitable for the a watershed which WWTP discharge is not capable to reduce enough pollutant.

감자와 무를 재배하는 사질양토 고랭지 밭의 시비량에 따른 비점오염 발생량 비교 (Comparison of Non-Point Pollution Occurrence by Amount of Fertilizer Applicetion from Sandy Loam Alpine Fields which Cultivetes Poteto and Radish in Korea)

  • 최용훈;원철희;박운지;신민환;신재영;이수인;양희정;최중대
    • 한국관개배수논문집
    • /
    • 제19권1호
    • /
    • pp.40-49
    • /
    • 2012
  • This study was performed to monitor the runoff of sandy soils on alpine uplands between March 2008 and December 2009, and assess non-point source pollution load. The fields were used to cultivete poteto in 2008 and radish in 2009. The fertilizers used in 200S, compared to those used in 2009, contained 2.1 times of nitrogen, 1.9 times of phosphorous, and 2.3 times of potassium. In 2008, the annual pollution load indiceted SS 2,908.47kg/ha/yr, COD 67.95kg/ha/yr, BOD 50.72kg/ha/yr, TN l3.29kg/ha/yr, and TP 9.97kg/ha/yr. In 2009, the annual pollution load indiceted SS 3,908.34kg/ha/yr, COD 225.04kg/ha/yr, BOD 156.96kg/ha/yr, TN 18.88kg/ha/yr, and TP 36.41kg/ha/yr. The amount of fertilizers used was about twice greeter in 2008, but the amounts of TN in pollution load per unit of rainfall were similar by 0.031kg/ha/mm to 0.029kg/ha/mm, whereas the amounts of COD (0.16kg/ha/mm to 0.35kg/ha/mm), BOD (0.12kg/ha/mm to 0.24kg/ha/mm), and TP (0.023kg/ha/mm to 0.057kg/ha/mm) doubled in 2009. We can infer thet the surface covering by the growth of crop mainly affected the transport of T-N through the subsurface flow to reduce non-point source pollution.

  • PDF

SRI 물관리 방법이 논의 관개용수량과 비점오염원 저감에 미치는 영향 (Evaluation of SRI Water Management on the Reduction of Irrigation Supply and NPS Pollution in Paddies)

  • 서지연;박배경;박운지;윤광식;최동호;김용석;류지철;최중대
    • 한국물환경학회지
    • /
    • 제32권2호
    • /
    • pp.183-190
    • /
    • 2016
  • Monitored data (rainfall runoff and water quality) from 4 different paddy sites over 3 years were compared to analyze the effect of irrigation water management on irrigation supply and rainfall runoff quality in Korea. The system of rice intensification water management was adopted at one site (SRI) while the conventional water management method was used for rice culture at the other three sites (CT, SD and HD). The soil texture at SRI, CT and SD was sandy loam while that at HD was silt loam. The average reduction of irrigation supply at SRI compared with CT, SD and HD during the 3 years studied was 49%, 51% and 55%, respectively. The average event mean concentration (EMC) at SRI compared with that at CT, SD and HD was decreased by 35% (BOD), 44% (COD), 47% (SS), 19% (TN) and 38% (TP). The correlation between rainfall runoff and the measured non-point source (NPS) pollutants was very good in general. The comparison revealed that SRI water management significantly reduced both irrigation supply and EMC in rainfall runoff. Paddy NPS pollution was closely related to factors that induce runoff such as rainfall and irrigation supply. It was concluded that SRI management could be an effective and practical option to cope with both water shortage due to climate change and water quality improvement in rural watersheds. However, further studies are recommended in large irrigation districts for use in the development and implementation of NPS pollution policies since the data was collected from field sized paddies.

Event Mean Concentration of Nitrogen and Phosphorus from a Dairy and Crop Farming Complex Watershed

  • Yoon, Kwang-Sik;Shirmohammadi, Adel;Choi, Woo-Jung;Jung, Jae-Woon
    • 한국농공학회논문집
    • /
    • 제48권7호
    • /
    • pp.65-72
    • /
    • 2006
  • Event mean concentration (EMC) of nitrogen (N) and phosphorus (P) is primary information for non-point source pollution assessment of a watershed. The EMCs for various types of agriculture such as dairy and crop farming under different climate and geologic conditions are not fully investigated. A diary- and cropfarming complex agricultural watershed in Piedmont region in Maryland, USA has been monitored for 10 years as a section 319 national monitoring program of US EPA. Dairy manure was the main source of fertilizer for crop farming in this watershed. Observed mean concentrations of N and P for each event were analyzed. Distribution of EMCs for N and P showed a wide range of variations. Representative EMCs of T-N and $NO_{3}-N$ tended to be higher than those reported for other agricultural watersheds. This study confirmed that site-specific EMC information for various agricultural practices is required for better assessment of non-point source pollution using EMC method.