• Title/Summary/Keyword: Non-point pollution source (NPS)

Search Result 70, Processing Time 0.026 seconds

Decision of Critical Area Due to NPS Pollutant Loadings from Kyongan Stream Watershed using BASINS-SWAT (BASINS-SWAT 모델을 이용한 경안천 유역의 비점원 오염배출 중점관리 대상지역 결정)

  • Jang, Jae-Ho;Yoon, Chung-Gyeong;Jung, Kwang-Wook;Son, Yeung-Kwon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.5
    • /
    • pp.69-78
    • /
    • 2009
  • In order to improve water quality of upper watershed of Paldang reservoir, it is necessary to evaluate non-point source pollution loads and identify critical watershed pollution sources. A GIS based Soil and Water Assessment Tool was applied to evaluate model application and reliability, estimate NPS pollution load, identify critical watershed by NPS pollution sources, and suggest various best management practices for Kyongan Stream watershed. Yearly NPS pollution loads were estimated 30.0% SS, 60.1% TN and 35.4% TP, respectably. The watershed pollution load is mainly decided by precipitation condition and SS and nutrients load have a significant regression relationship. Based on 10-year average yearly NPS pollution load, critical sub-watersheds were identified. The No. 5 and 17 which have lots of relatively intensive agricultural fields and scattered industrial area were vary critical sub-watersheds and under more intensive pollution load. In order to control critical watershed, watershed best management practices such as scientific fertilizer, contour farming and parallel terrace, transferring the sloppy farmland to grass or forest and constructing a buffer zone, and constructing wetlands and retention ponds will be applied. Overall the SWAT model can be efficiently used for identification of critical sub-watersheds in order to develop a priority watershed management plan to reduce water pollutions.

Assessing Impact of Non-Point Source Pollution by Management Alternatives on Arable Land using AGNPS Model (AGNPS 모형을 이용한 농경지 관리대안에 따른 비점오염 저감효과 분석)

  • Lee, Eun-Jeong;Kim, Hak-Kwan;Park, Seung-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1008-1013
    • /
    • 2007
  • The objectives of the paper were to identify appropriate best management practices (BMPs) for reducing nonpoint source (NPS) pollutant loadings and to simulate the effects of the application of the several BMP scenarios on the study watershed using Agricultural Nonpoint Source (AGNPS) model. AGNPS model was calibrated and validated for runoff, sediment yield, and nutrient components using the observed hydrologic and water quality data. The simulated runoff, sediment, and nutrient components were well agreed with observed data. The validated AGNPS was applied to estimate the NPS pollution removal efficiency for BMP scenarios which were selected considering the pollutant characteristics of the study watershed.

  • PDF

Evaluation of Furrow Mulching Methods for Controlling Non-Point Source Pollution Load from a Sloped Upland (경사밭 고랑멀칭 방법에 따른 비점오염 저감효과 평가)

  • Yeob, So-Jin;Kim, Min-Kyeong;Kim, Myung-Hyun;Bang, Jeong-Hwan;Choi, Soon-Kun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.33-43
    • /
    • 2022
  • South Korea's agricultural nitrogen balance and phosphorus balance rank first and second, respectively, among OECD countries, and proper nutrient management is required to preserve the water quality of rivers and lakes. This study evaluates the effects of furrow mulching on the reduction of non-point source pollution (NPS) load from a sloped upland. The study site was Wanju-gun, Jeollabuk-do, and the survey period was from 2018 to 2019. The slope of the testbed was 13%, and the soil type was sandy loam. The cropping system consisted of maize-autumn Chinese cabbage rotation. The testbed was composed of bare soil (bare), control (Cont.), furrow vegetation mulching (FVM), and furrow nonwoven fabric mulching (FFM) plots. Runoff was collected for each rainfall event with a 1/100 sampler, and the NPS load was calculated by measuring the concentrations of SS, T-N, and T-P. The NPS load was then analyzed for the entire monitoring and crop cultivation periods. During the monitoring period, the effect of reducing the NPS load was 1.5%~44.5% for FVM and 13.1%~55.2% for FFM. During the crop cultivation period, it was 1.2%~80.5% for FVM and 27.0%~65.1% for FFM, indicating that FFM was more effective than FVM. As the NPS load was fairly high during the crop conversion period, an appropriate management method needs to be implemented during this period.

Application of Surface Cover Materials and Soil Amendments for Reduction of Non-Point Source Pollution from Upland Fields (배추와 무밭에서 발생하는 비점오염원 저감을 위한 피복재와 토양개량제 적용)

  • Shin, Min Hwan;Jang, Jeong Ryeol;Shin, Hyun Jun;Kum, Dong Hyuk;Choi, Yong Hun;Won, Chul Hee;Lim, Kyoung Jae;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.21-28
    • /
    • 2013
  • The objective of the study was to investigate the effect of rice straw mat, rice straw mat with PAM (Polyacrylamide) and gypsum addition on surface runoff and sediment discharge in field. Six experimental plots of $5{\times}22m$ in size and 3 % in slope prepared on gravelly sandy loam soil were treated with control, rice straw mat cover with gypsum and rice straw mat cover with gypsum and PAM. Radish in Spring and Chinese cabbage in autumn growing seasons were cultivated. Non point source (NPS) pollution discharge was monitored and compared among the treatments. Rainfall of the 10 monitored events ranged from 17.0 mm to 93.5 mm. Runoff coefficient of the events was 0.005~0.239 in control plot, 0~0.176 in rice straw plot with gypsum and 0~0.046 in rice straw mat plot with gypsum and PAM. When compared to the control plot, the runoff amount was reduced by 10.4~100 % (Ave. 60.8) in rice straw plot with gypsum and 80.7~100 % (Ave. 96.7 %) in rice straw mat plot with gypsum and PAM. The reduction of NPS pollution load was 54.6 % for BOD5, 71.5 % for SS, 41.6 % for TN and 61.4 % for T-P in rice straw with gypsum plot and 91.9 % for BOD5, 92.0 % for SS, 88.0 % for TN and 88.5 % for T-P in rice straw mat with gypsum and PAM plot. This research revealed that rice straw mat cover with soil amendments on the soil surface could not only increase the crop yield but also reduce the NPS pollution loads substantially.

Application Evaluation of Best Management Practices for Agricultural Non-Point Source Pollution using Delphi Survey Method (전문가 델파이 방법을 이용한 농업 비점오염 저감 기술의 현장 적용성 조사)

  • Kim, Min-Kyeong;Jung, Goo-Bok;Kim, Min-Young;Kim, Myung-Hyun;Cho, Kwang-Jin;Choi, Soon-Kun;Hong, Seong-Chang;So, Kyu-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.33 no.2
    • /
    • pp.144-147
    • /
    • 2014
  • BACKGROUND: It is essential to prioritize the exact and clear understanding of agricultural nonpoint source pollution (NPS) controls. The realistic policies and systems should also be developed based on this understanding. Therefore, this study aimed to present agricultural Best Management Practices (BMPs) applicable for the fields based on the Delphi survey result. METHODS AND RESULTS: This study deduced the evaluation items to assess each BMP for agricultural NPS control and conducted the surveying using the Delphi method based on agricultural BMP experts. In addition, its on-the-spot application were evaluated. Considering its importance, technical, social and economic proprieties showed that political support was ranked first and followed by cost investment, labor investment, reduction effect and resident participation. The survey findings by agricultural BMP experts showed the good performance of on-the-spot application can be achieved from fertilization by soil testing, residue and green manure application and contour plowing which are applicable within a field. Agricultural BMPs, highly applicable for the fields, were the countermeasures that farmers who are the principal bodies of agricultural NPS control could be participated directly. CONCLUSION: The active participation of farmers is essential for effective control of agricultural NPS. It is necessary to establish various incentive systems.

Wash-off Characteristics of NPS Pollutants from Forest Landuse (산림지역의 비점오염물질 유출특성 및 EMC 산정)

  • Choi, Ji-Yeon;Lee, So-Young;Kim, Lee-Hyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.129-134
    • /
    • 2009
  • As a result of improved wastewater treatment facilities, the point source pollution emitted from human and municipal wastes is greatly decreasing. Conversely, the non-point source (NPS) pollution emanated from city streets, rural homes, suburban development, animal feedlot, croplands, and forestry is rapidly increasing. Practically, the main concern of the government is to control NPS pollutants by means of establishing a long term plan in order to protect the aqua-ecosystem. Studies have been conducted to assess the intensity of NPS from various landuses. In Korea, the data on NPS pollutant loadings are limited to few and broadly categorized landuses unlike in USA wherein specific landuses are available. This research aims to characterize the wash-off characteristics of NPS pollutants from forest landuse. Two sites were monitored during 15 storm events from 04/2008 to 10/2008. Mean $BOD_5$ EMCs are 1.13 mg/L and 0.91 mg/L for the two sites, respectively. The results of this research will be a helpful contribution for the assessment of total NPS pollutant loadings.

Analysis of First Flushing Effects and EMCs of Non-point Pollutants from Impervious Area during Rainfall (강우시 불투수성 지역의 비점오염물질 EMCs 산정 및 초기세척효과 분석)

  • Ahn, Tae-Woong;Kim, Tae-Hoon;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.459-473
    • /
    • 2012
  • This study evaluated the rainfall-runoff characteristics of Non-point Pollution Source (NPS) of the impervious area through on-site monitoring. In this study, trend analysis was performed by various runoff analysis method of non-point pollution source. The characteristics of rainfall at impervious area appeared to be influenced by rainfall strength. It is judged that the measure is required to be prepared against that now that concentration difference of non-point pollution source appeared to be big by precedent number of days of no rainfall. However, it appeared that Rainfall Sustaining Time (RST) has nothing to do with effluent concentration of non-point pollution source, however, the rising tendency that effluent concentration did not appear because the tendency that concentration of non-point pollution source reduces more than 50% within initial 60 min due to first flushing effects and rainfall sustaining time is long. If looking into the outflow tendency of non-point pollution source at the impervious area, it showed the tendency that the concentration lowers gradually as time goes by after initial concentration appeared very high. However, it could be recognized that the concentration of non-point pollution source appeared to be high as the pollutants integrated on the surface of the road during dry season. The Event Mean Concentrations (EMCs) in impervious area were ranged $9.2{\sim}199.3mg{\cdot}L^{-1}$ for TSS, $8.1{\sim}24.2mg{\cdot}L^{-1}$ for $COD_{Mn}$, $0.070{\sim}1.860mg{\cdot}L^{-1}$ for T-N. Based on such runoff characteristics of non-point pollution source, it is judged that it would be desirable to process initial rain efficiently as the measure against initial rain phenomenon at the impervious area.

Analysis of NPS Pollution reduction from No-till Field (무경운 밭에서의 비점오염물질 저감효과 분석)

  • Lee, Su In;Won, Chul Hee;Shin, Min Hwan;Shin, Jae Young;Jeon, Je Hong;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.51-59
    • /
    • 2015
  • Various Best Management Practices (BMPs) have been suggested to reduce soil erosion and non point source (NPS) pollutant loads from agricultural fields. However, very little research regarding water quality improvement with No-till (NT) has been performed in Korea. Thus, effects of NT were investigated in this study. The objective of the study was to investigate the effect of NT on the surface runoff and sediment discharge in a field. Eight experimental plots of $5{\times}30m$ in size and 3 % or 8 % in slope prepared on gravelly sandy loam soil were treated with Conventional-till (CT) and NT. Runoff and NPS pollution discharge were monitored and compared the treatments. The amounts of rainfall from 13 monitored events ranged from 28.7 mm to 503.5 mm. The runoff amount was reduced by 17.6~59.2 % in 3 % NT and 29.6~53.2 % in 8 % NT. The average NPS pollution loads of the 3 % NT plots and 8 % NT plot were reduced about 45.1~89.2 % and 47.7~98.0 % compared to those of the CT plots, respectively. This research revealed that NT can reduce the NPS pollution loads substantially as well as increase the crop yield. Runoff and NPS pollution loads reduction by NT method could be contribute to improve the water quality of streams in agricultural regions.

Application of BMP for Reduction of Runoff and NPS Pollutions (강우유출수와 비점오염물질을 저감하기 위한 최적관리기법의 적용)

  • Won, Chul-Hee;Shin, Min-Hwan;Shin, Hyun-Jun;Lim, Kyoung-Jay;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.5
    • /
    • pp.1-7
    • /
    • 2013
  • The objective of this research was to experimentally test the effect of tillage methods on the reduction of runoff, non-point source (NPS) pollution load, sediment and discharge under a rainfall simulation. We used the runoff plots of $5m{\times}30m$ ($L{\times}W$) in size. Experimental treatments were conventional tillage (CT), CT-rice straw bundle (CT-RSB) and two no-till (NT) plots; slope of 3 % or 8 % ; and rainfall intensity of 30 mm/hr. The rainfall simulation was conducted to three times. The time to initial runoff from NT plots was less than that from CT plots regardless of the slope and it was delayed about 65~90 % compared to that of CT plot. And sediment discharge of 8 % slope reduced to 55 % compared to CT plot. But the sediment discharge was not occurred at 3 % slope. The NT and CT-RSB methods have a great possibility of reducing runoff and NPS pollution loads. Runoff rate of NT plots was significantly lower than those of CT plot. The average NPS pollution loads of the NT plots and CT-RSB plot reduced about 55~80 % and 2.1~40 % compared to those of the CT plots, respectively. It was also shown that runoff and NPS pollution loads reduction by NT method could be very significant and contribute to improve the water quality of streams in agricultural regions. It was concluded that the use of NT method on agricultural fields could reduce soil erosion and muddy runoff significantly and help improve the water quality and aquatic ecosystem.

Comparison of Discharge Characteristics of NPS Pollutant Loads from Urban, Agricultural and Forestry Watersheds (도시, 농촌 및 임야유역으로부터 배출되는 비점원 오염부하의 특성비교)

  • Yur, Joonghyun;Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.184-189
    • /
    • 2005
  • Impacts of non-point source pollution on water quality are well known. In this paper, effects of land use, precipitation characteristics, discharge characteristics on non-point source pollutant loadings at urban, agricultural and forestry watersheds were discussed. Rainfall runoffs from fifteen rainfall events were sampled and analysed at two urban watersheds, one rural watershed, and one forestry watershed. EMCs (Event Mean Concentration) were calculated based on monitored flow rates and concentrations. Statistical analysis carried out with runoff loadings and affecting variables indicated that runoff loadings are weakly correlated with the rainfall intensity and the dry days before rainfall events while showed no correlations with rainfall depth nor runoff quantity. By comparing EMCs between study watersheds on log-normal cumulative probability scale, EMCs ranking were in the descending order of urban watershed>agricultural watershed>forestry watershed for SS, TCOD, TN, and TP.