• 제목/요약/키워드: Non-point pollution reduction facilities

검색결과 32건 처리시간 0.026초

도로비점오염 저감시설의 유형선정방법 개발 및 적용 (Decision Making Methods for Types of Roadside Non-point Pollution Reduction Facilities and Its Application)

  • 조혜진
    • Ecology and Resilient Infrastructure
    • /
    • 제7권4호
    • /
    • pp.256-261
    • /
    • 2020
  • 국내의 도로비점오염저감시설은 오염원을 저감시키는 성능에 근거해서 침투형, 식생형, 저류형, 인공습지 등과 같이 분류된다. 이 분류기법은 기법을 이해하기는 용이하나 도로교통과 관련된 요소가 고려되지 않아 실제 도로기술자가 계획이나 설계에 적용할 때 애로가 많았다. 본 연구에서는 도로비점오염저감시설을 설계에 적용할 때 시설의 종류를 결정할 수 있는 분류방법론을 개발하였다. 도로의 특성 (위치, 차선, 교통량), 시설여유, 도로의 구조물 등을 주요 결정인자로 도로비점저감 대책의 의사결정과정을 만들어 유형별로 시설을 선정할 수 있는 기법을 개발하였다. 각 유형별로 사이트의 조건과 적용이 가능한 시설 및 대책을 정리하여 현장에 적용할 수 있도록 하였다. 개발한 기법은 경기도 도로구역에 적용하여 보완하였고, 비점저감 계획에 사용할 수 있도록 하였다.

팔당 상수원 보호구역내 도로비점오염의 특성 및 저감시설의 적용성 연구 (Characteristics of Roadside Non-point Pollution and Applicability of Reduction Facilities in Paldang Water Source Protection Zone)

  • 조혜진;송미영
    • Ecology and Resilient Infrastructure
    • /
    • 제7권4호
    • /
    • pp.294-299
    • /
    • 2020
  • 본 연구에서는 팔당 상수원 보호구역내 적정 도로비점오염 저감시설의 계획을 위해 대상 도로구간의 현장조사를 통해서 보호구역내 도로의 특성을 파악하고 이에 적용가능한 도로를 선정하고 시설을 시범적용하여 그 유효성을 검증하였다. 팔당 상수원 보호구역은 도로주변 토양의 배수등급이 높아 침투시설을 지양하고 도로사면을 통한 자연적인 오염원 저감방법을 적용하는 것이 적정하다. 앞으로 도로비점저감시설의 계획 및 설계에서 대상도로의 특성에 대한 분석 후 저감계획을 세우는 것이 적정하며 이는 관련 규정 및 설계 기준에도 반영되어야 할 것이다.

도로상의 비점오염물질 저감을 위한 초기 우수유출수 처리에 관한 연구 (A Study on the Early-stage Storm Runoff Treatment for the Reduction of Non-point Pollution Materials on the Road)

  • 노성덕;이대근;전양근
    • 한국물환경학회지
    • /
    • 제20권5호
    • /
    • pp.525-533
    • /
    • 2004
  • The object ofthis study was to test for STORMSYS process that composed Catch Basin and Stormsys(three units: vortex solids separator, filter media bed and vegetated filter strips). It could be applied to treat the first-flush non-point pollution materials on the road(especially, motorway). This study investigated that the runoff characteristics of non-point pollutions containing the heavy metal(Fe, Zn and Cu) by rainfall showed relatively high pollution concentration in the early-stage storm runoff on the road, which seems to be caused by the vehicular traffic, and showed the rapid reduction of pollution concentration on the basis of about 5mm rainfall volume. As the number of the non-rainy days were increased, the pollution concentration by storm runoff was increased, also. As a test result of this process, the average removal efficiency of BOD, $COD_{mn}$, SS, T-N and T-P over the testing period were 92.7%,88.6%,97.4%,93.0% and 93.3%, respectively. Also, the average removal efficiency of n-Hexane, Fe, Zn and Cu were 86.7%, 96.1%, 84.4% and 78.4%, respectively. As shown in the characteristics of storm runoff, the non-point pollution materials have high pollution concentration in the early-stage storm runoff on the road, the installation of STORMSYS process is expected to reduce considerable amount of non-point pollutions.

Emergy를 이용한 오염물질 저감시설의 환경 비용/편익 분석 (Environmental Cost and Benefit Analysis Pollutant Reduction Facilities of the using the Emergy)

  • 김진이;황하선;김상수;이재관
    • 한국물환경학회지
    • /
    • 제29권5호
    • /
    • pp.591-597
    • /
    • 2013
  • The input emergy of an advanced treatment plant for reducing the 1 kg of TN and TP was estimated 4.14E+14 sej/kg, 5.02E+15 sej/kg, respectively. In addition, the input emergy of constructed wetland for reduction of the 1 kg of TN and TP reduction was estimated to be 2.48E+14 sej/kg, 3.38E+15 sej/kg, respectively. The cost reducing 1 kg of TN and TP for an advanced treatment plant was estimated 197,466 won and 2,388,739 won respectively and constructed wetland was estimated 117,976 won and 1,609,213 won respectively. As a result, All of the emergy source of constructed wetland for reducing non-point source is renewable resource. If we use the constructed wetland, it results in enhancing economic value by reducing of non-point pollution, controlling a flood and providing the habitat of animals or plants. Improving water quality program in the Nakdong River Basin should be changed into an ecological treatment facilities from expansion of the sewage treatment facilities and advanced treatment plant using high cost and non-renewable energies.

EPA-SWMM을 이용한 LID 기법의 비점오염 저감효과 분석 (Evaluation of the Effectiveness of Low Impact Development Practices in an Urban Area: Non-point Pollutant Removal Measures using EPA-SWMM)

  • 조선주;강민지;권혁;이재운;김상단
    • 한국물환경학회지
    • /
    • 제29권4호
    • /
    • pp.466-475
    • /
    • 2013
  • Non-point source pollution management is one of the most important issues in Korean water quality/watershed management. In recent years, Low Impact Development (LID) has emerged as an effective approach to control stormwater in an urban area. This study illustrates how to design and evaluate the effect of non-point pollutant management using EPA-SWMM LID module and suggests design parameters for modeling LID facilities. In addition, optimal installation locations of LID can be determined by a simple distributed hydrologic model by using SWMM for a long-term.

울산시 동천 비점오염원 제어효과 (Effects of controlling plans of non-point pollutant sources in dongcheon of Ulsan)

  • 강호선;조홍제
    • 상하수도학회지
    • /
    • 제28권3호
    • /
    • pp.265-276
    • /
    • 2014
  • In this study, we suggested 4 plans to reduce non-point pollutant sources in Dongcheon and analyzed their controlling effects by water quality modeling, XP-SWMM. To do this we identified the influx of non-point pollutant sources to the initial rainwater through the water quality survey in the river and analyzed the causes of them at major locations, and suggested 4 kinds of plans reducing non-point pollutant sources. Plans reducing the non-point pollutant sources through cleaning the industrial road around the river(plan A), through a separate treatment facilities like the gutter(plan B), through installing treatement facilities(plan C), or through combing plan B and C(plan D) were analyzed using XP-SWMM model. The analysis showed that plan A, B, C and D reduced non-point pollutant sources average 21.7 %, 24.7 %, 49.3 %, 56.7 % respectively. Therefore, the water quality pollution in Dongcheon due to the influx of non-point pollutant sources is considered to be reduced effectively though cleaning the road, installed at the exits of paddy or factory basins, invasion type facilities or equipment-type facilities.

생태저류지 LID 시설의 강우유출수 처리비 산정 (Estimation of Stormwater Interception Rate for Bio-retention LID Facility)

  • 최정현;이옥정;김상단
    • 한국물환경학회지
    • /
    • 제33권5호
    • /
    • pp.563-571
    • /
    • 2017
  • Because of the rapid progress of urbanization in recent decades, the proportion of impervious areas in cities has increased. As a result, hydrological properties of urban streams have changed and non-point pollution sources have increased, that have had considerable influence on human life and ecosystems. To manage these situations, application of non-point pollution reduction facilities and LID facilities are expanding recently. In this study, it is investigated if rainfall interception rate used in design of non-point pollution reduction facilities can be applied to design of LID facilities. For this purpose, EPA SWMM is constructed for part of Noksan National Industrial Complex area wherein long-term observed storm water data can be obtained and storm water interception rates for various design capacities of a bio-retention LID facility reservoirs are estimated. While sensitivity of storm water interception rate according to design specifications of bio-retention facility is not large, sensitivity of storm water interception rate according to regional rainfall characteristics is relatively large. As a result of comparing present rainfall interception rate estimation method with the one proposed in this study, the present method is highly likely to overestimate performance of the bio-retention facility. Finally, a new storm water interception rate formula for bio-retention LID facility is proposed.

만대·가아·자운지구 비점오염 유출특성 분석 및 저감사업 평가 (Characteristics of Non-point Pollution Runoff in Mandae, Gaa, and Jaun Districts and Evaluation of Reduction Projects)

  • 우수민;금동혁;홍은미;임경재;신민환
    • 한국농공학회논문집
    • /
    • 제64권1호
    • /
    • pp.65-77
    • /
    • 2022
  • Due to muddy water from the highland fields upstream of Soyangho Lake, the Mandae, Gaa, and Jawoon have been redesignated as NPS management areas. This study aims to evaluate the adequacy and supplementation points of the implementation plan by analyzing the operation status of muddy water generation and reduction facilities through on-site investigations by NPS management area to achieve the effective nonpoint pollution reduction goal in the implementation of the implementation plan established in 2020. The SS load calculated based on the survey results from July to October 2019 from 2017 showed a decreasen in 2019 compared to 2017. Both and the Jawoon were analyzed to have decreased. However, the amount of precipitation also decreased by about 27%, so it was judged that the effect of the reduction project was not significant. As a result of the detailed investigation of abatement facilities, about 86% of the 793 facilities installed in the management area were evaluated as 'good'. As a result of a detailed investigation by subwatersheds, subwatersheds 105 and 106 in the Mandae were analyzed as apprehensive subwatersheds. appeared to fall. In addition, it was analyzed that the effect of reducing muddy water in the Mandae district was insufficient due to the high ratio of leased farmers, lack of efforts to reduce turbid water in leased farmland, conversion to annual crops, and neglect of bare land. In the case of Gaa district, although the abatement facilities are concentrated in the upstream, muddy water was also found to be severe.

The control of point and non-point source nitrogen to prevent eutrophication of the Nakdong River basin, Korea

  • Kwak, Sunggue;Yun, Zuwhan
    • Membrane and Water Treatment
    • /
    • 제11권5호
    • /
    • pp.345-351
    • /
    • 2020
  • Eutrophication of surface waters is commonly caused by excessive inputs of nutrients such as nitrogen and phosphorus. Nakdong River basin was chosen as the study area to investigate the effect of point and non-point source pollution of nitrogen on eutrophication in water body. Non-point source inputs of nitrogen accounted for approximately 84% in the total nitrogen input of the upper Nakdong river watershed, which mainly consists of agricultural land and forests. However, point source inputs of nitrogen accounted for 58~85% in the total nitrogen input of the middle and lower watersheds, including urban area. Therefore, for watershed near urban area, control of point source inputs of nitrogen may be an optimal method to control eutrophication. In this respect, the enforcing reduction of nitrogen in the final effluent of wastewater treatment facilities is needed. On the other hand, to enact more stringent nitrogen regulations, the LOT (limit of technology) and environmental impact should be considered. In this study nitrogen data were analyzed to propose new nitrogen regulations.

식생이 적용된 비점오염 저감시설의 강우 특성에 따른 효율 분석 (Analysis of Non-point Pollution Source Removal Efficiencies according to Rainfall Characteristics in Low Impact Development Facilities with Vegetation)

  • 구수환;임지열;어성욱;길경익
    • 한국물환경학회지
    • /
    • 제33권3호
    • /
    • pp.247-255
    • /
    • 2017
  • This research was conducted to analyze removal efficiencies of non-point pollution source (NPS) in low impact development (LID) facilities with vegetation. In this research, removal efficiencies of NPS were calculated using rainfall monitoring data for 5 years in grassed swale (GS) and vegetative filter strip (VFS). TSS was greater than other pollutants, and it ranged 11.9 ~ 351.7 mg/L in GS and 12.8 ~ 350.7 mg/L in VFS. Outflow EMCs were reduced than inflow EMCs, overall removal efficiencies of NPS were 67 ~ 86% in GS and 63 ~ 91% in VFS. 50 % reduction efficiency of rainfall runoff was observed between inflow and outflow in each LID facility. TSS removal efficiency in GS and VFS was correlated with rainfall characteristics. The rainfall for TSS removal efficiency over 50% was determined about 31 mm, 34 mm and average rainfall intensity was 3.0 mm/hr, 3.9 mm/hr in GS and VFS. Therefore, GS and VFS were regarded effective LID facilities as removal of pollutants and rainfall runoff. Also, this research result can be used as an important data for management of NPS.