• Title/Summary/Keyword: Non-point pollutants

Search Result 291, Processing Time 0.023 seconds

Evaluation of the Volume and Pollutant Reduction in an Infiltration and Filtration Facility with Varying Rainfall Conditions (침투여과시설의 강우계급에 따른 유량 및 비점오염물질 저감 효과 분석)

  • Yu, Gigyung;Choi, Jiyeon;Kang, Hee-Man;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.1
    • /
    • pp.30-35
    • /
    • 2016
  • Urban areas generate large amounts of stormwater and non-point source (NPS) pollutants during rainfall events. These are caused by various land use runoffs, vehicular and human activities and increased impervious cover. The increased runoff and NPS pollutants cause water quality deterioration in the receiving waters and adversely affect the aqua-ecosystem. These environmental impacts could be reduced through the application of low impact development (LID) techniques. In Korea, more than 80% of the total rainfall occurs in summer and most of these were 10 mm or less. Therefore, if the LIDs developed were able to cope with rainfall of 10 mm and below, NPS management could be efficiently conducted. This research was performed to determine the effect of varying amounts of rainfall on the performance capability of an established infiltration and filtration facility (IF facility) that can be applied to Korea's common rainfall ranges. The IF facility area was 1.75% of the catchment area, however the facility treated more than 40% and 60% runoff volume and pollutant reduction respectively for a 10 mm rainfall. Lastly, higher volume and pollutant reduction could be attained when the LID area was at least 2% of the entire catchment.

Morphological Classification of Unit Basin based on Soil & Geo-morphological Characteristics in the yeongsangang Basin (토양 및 지형학적 특성에 따른 영산강유역의 소유역 분류)

  • Sonn, Yeon-Kyu;Hyun, Byung-Keun;Jung, Suk-Jae;Hur, Seong-Oh;Jung, Kang-Ho;Seo, Myung-Chul;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.262-268
    • /
    • 2007
  • To characterize morphological classification of the basins, four major basin characteristics of the unit basins, including sinuosity, ratio of forest, ratio of flat area, and tributary existence were selected for cluster analysis. The analysis was carried out using soil map, topographic map, water course map, and basin map of the fifty unit basins in the Yeongsangang Basin. The unit basins could be categorized to five basin groups. The fitness by the Mantel test showed good fit of which r was 0.830. These grouping based on comprehensive soil and topographic characteristics provides best management practices, water quality management according to pollutants, increased water related model application and reasonable availability of water management. For agricultural management of water resources and conservation of water quality from agricultural non-point pollutants, therefore, comprehensive systematic classification of soil characteristics on unit basin might be an useful tool.

Simulation of Various Baffle Types in a Constructed Wetland Sedimentation Tank using CFD (CFD를 이용한 Hybrid 인공습지의 초기침강지 저류판 구조 모의)

  • Noh, Taegyun;Jeon, Jechan;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.18 no.3
    • /
    • pp.324-329
    • /
    • 2016
  • Constructed wetlands are widely applied in urban and rural areas for various purposes such as pollutants reduction, acquisition of eco-spaces and habitats, flooding reduction, acquisition of water resources and environmental education. Since the design of constructed wetlands utilizes ecosystems, special consideration must be given to ecological mechanisms, environmental mechanisms and hydrological mechanisms. To ensure the sustainable functionality of constructed wetlands, it is necessary to achieve stable flow rate and velocity, and remove sediments to ensure sufficient space for detention. To enhance the efficiency of constructed wetland sedimentation basins, this study determined the optimal position for baffle installation, and applied Computational Fluid Dynamics (CFD) to the cross-sectional design of wetlands. CFD analysis revealed that the decrease in flow velocity with baffle installation enhanced the efficiency of sedimentation of particulate matters. Vertical baffles had higher sedimentation efficiency than those with an inclined angle. When vertical baffles were installed in the sedimentation basin of a hybrid constructed wetland to reduce non-point source pollutants in urban areas, the average flow velocity within the basin decreased by 10~30%, while the sedimentation efficiency improved by 1.3~1.5 times. The application of CFD to constructed wetlands is expected to improve the cost efficiency of designing hybrid constructed wetlands with high removal efficiency.

Analysis of Water bady Damage at Osu Stream Using the Flow-Loading Equation and 8-Day Intervals Cumulative Flow Duration Curve (유량-부하량 관계식과 8일 간격 누적유량지속곡선을 이용한 오수천의 수체 손상도 분석)

  • Lee, Young Sung;Kim, Young Suk;Han, Sung Wook;Seo, kwon ok;Lim, chang bok;Lee, Yeong Jae;Kim, Kyunghyun;Jung, Kang-Young
    • Journal of Environmental Science International
    • /
    • v.27 no.12
    • /
    • pp.1179-1193
    • /
    • 2018
  • The purpose of this study at water quality pollutants to propose proper management method for the Osu-A unit watershed which is the influent tributary located upstream of the Sumjin -river among the 13 unit watersheds in the Sumjin-river water system. Analyzed the correlation between flow-pollution loading and the correlation between land use type, BOD and TP items, and analyzed 8-day intervals Cumulative Flow Duration Curve (CFDC) and Load Duration Curve (LDC) to evaluate water quality damage. As a result, both BOD and TP were larger than 1 and the concentration of water pollutants increased with increasing flow. BOD was positively correlated with Urban and Field, and TP was positively correlated with Field with 0.710. As a result of the LDC, BOD was analyzed that the target water quality was achieved with the excess rate of less than 50%, and TP exceeded the target water quality by 50.1%. BOD usually exceeded the standard value (exceedance probability 50%) at low flow zone and On the other hand, TP usually exceeded the standard value at high flow zone. Monthly BOD (April to June) and TP (May to August) exceeded the standard. Sewage Wastewater treatment and non-point pollution control is Osu-A unit watersheds are effective in improving BOD and TP.

Evaluation of Spatial and Temporal Variations of Water Quality in Lake Shihwa and Outer Sea by Using Water Quality Index in Korea: A Case Study of Influence of Tidal Power Plant Operation (수질평가지수를 이용한 시화호 내측 및 외측 해역의 시·공간적 수질 변화 평가: 조력발전소 가동에 따른 영향 연구)

  • Ra, Kongtae;Kim, Joung-Keun;Kim, Eun-Soo;Kim, Kyung-Tae;Lee, Jung-Moo;Kim, Sung-Keun;Kim, Eu-Yeol;Lee, Seung-Yong;Park, Eun-Ju
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.16 no.2
    • /
    • pp.102-114
    • /
    • 2013
  • The basin of Lake Shihwa is one of highly industrialized region of Korea and a current environmental issue of study area is the operation of tidal power plant (TPP) to improve water quality. The application of water quality index (WQI) which integrates five physiochemical parameters (transparency, DO, DIN, DIP and chlorophyll-a) of water quality in Lake Shihwa and outer sea during 2011~2012 were performed not only to evaluate the spatial and temporal distribution of the water quality but also to assess the effect of water quality improvement by the operation of tidal power plant. The higher WQI values were observed in monitored sites near the industrial complexes in Lake Shihwa and the outfall of wastewater treatment plants (WWTPs) in outer sea. This indicates that the quality of seawater is influenced by diffuse non-point sources from industrial, municipal and agricultural areas in Lake Shihwa and by point sources from the effluence of municipal and industrial wastewater throughout WWTPs in outer sea. Mean WQI value decreased from 53.0 in 2011 to 42.8 in 2012 of Lake Shihwa. Water quality has improved significantly after TPP operation because enhancement of seawater exchange between Lake Shihwa and outer sea leads to improve a hypoxic condition which is primarily a problem in Lake Shihwa. Mean WQI of outer sea showed similar values between 2011 and 2012. However, the results of hierarchical cluster analysis and the deterioration of water quality in summer season indicate that the operation of tidal power plant was not improved the water quality in the upper most area of Lake Shihwa. To successfully improve overall water quality of Lake Shihwa, it is urgently necessary to manage and reduce of non-point pollution sources of the basin of Lake Shihwa.

The Performances of Sediment Trap for Reducing Water Pollutants and Soil Loss from Rainfall Runoff in Cropland (농경지 토양유실 및 수질오염물질 유출에 대한 침사구 조성 효과)

  • Park, Se-In;Park, Hyun-Jin;Kim, Han-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.307-313
    • /
    • 2019
  • BACKGROUND: An intensive farming system may be of the most important source for agricultural non-point source (NPS) pollution, which is a major concern for agricultural water management in South Korea. Various management practices have therefore been applied to reduce NPS loads from upland fields. This study presents performances of sediment trap for reducing NPS and soil loss from rainfall runoff in cropland. METHODS AND RESULTS: In 2018 and 2019, three sediment traps (L1.5 m × W1.0 m × D0.5 m = 0.75 ㎥) and their controls were established in the end of sloped (ca. 3%) upland field planted with maize crops. Over the seasons, runoff water was monitored, collected, and analyzed at every runoff. Soils deposited in sediment traps were collected and weighed at the season end. Sediment traps reduced runoff amount (p<0.05) and NPS concentrations, though the decreased NPS concentrations were not always statistically significant. In addition, sediment traps had a significant prevention effect on soil loss from rainfall runoff in a sloped cropland. CONCLUSION: The results suggest that the sediment trap could be a powerful and the best management practice to reduce NPS pollution and soil loss in a sloped upland field.

A Study on the Development of Performance Evaluation Method for the Stormwater Treatment Wetland (비점오염관리를 위한 강우유출수 처리습지의 성능평가방법 개발)

  • Kim, Young Ryun;Kim, Sang Dan;Lee, Suk Mo;Sung, Kijun;Song, Kyo Ook;Son, Min Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.354-364
    • /
    • 2013
  • The performance of the stormwater wetlands can be significantly influenced by antecedent stormwater in storage at the commencement of a stormevent. As inflows are intermittent and stochastic in nature, the evaluation of the treatment efficiency of a stormwater wetland should be considered by runoff capture and water treatment characteristics during interevent periods. In this study, analytical probabilistic model is applied to identity runoff capture rate and treatment efficiency of the stormwater wetland. To achieve this, continuous rainfall data recorded in Busan for 31 years has been analyzed to derive the runoff capture rate, and 1st order kinetic decay constants ($k_V$, 1/d) are calculated from regression analysis to identify pollutants removal during interevent periods. The results show that about 60.9% of annual average runoff is captured through the stormwater wetland. The annual average treatment efficiencies of SS, BOD, COD, TN and TP is about 11.4, 8.9, 9.8, 4.3 and 9.6%, respectively. The analytical model has been compared with the numerical model and it shows that analytical model is valid. Performance evaluation methods developed in this study has the advantages of considering characteristics of rainfall-runoff, facility type and pollutant removal.

Cost-Effectiveness Analysis of Low-Impact Development Facilities to Improve Hydrologic Cycle and Water Quality in Urban Watershed (도시유역의 물순환 및 수질 개선을 위한 저영향개발 시설의 비용 효율 분석)

  • Choi, Jeonghyeon;Kim, Kyungmin;Sim, Inkyeong;Lee, Okjeong;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.206-219
    • /
    • 2020
  • As urbanization and impermeable areas have increased, stormwater and non-point pollutants entering the stream have increased. Additionally, in the case of the old town comprising a combined sewer pipe system, there is a problem of stream water pollution caused by the combined sewer overflow. To resolve this problem, many cities globally are pursuing an environmentally friendly low impact development strategy that can infiltrate, evaporate, and store rainwater. This study analyzed the expected effects and efficiency when the LID facility was installed as a measure to improve hydrologic cycle and water quality in the Oncheon stream in Busan. The EPA-SWMM, previously calibrated for hydrological and water quality parameters, was used, and standard parameters of the LID facilities supported by the EPA-SWMM were set. Benchmarking the green infrastructure plan in New York City, USA, has created various installation scenarios for the LID facilities in the Oncheon stream drainage area. The installation and maintenance cost of the LID facility for scenarios were estimated, and the effect of each LID facility was analyzed through a long-term EPA-SWMM simulation. Among the applied LID facilities, the infiltration trench showed the best effect, and the bio-retention cell and permeable pavement system followed. Conversely, in terms of cost-efficiency, the permeable pavement systems showed the best efficiency, followed by the infiltration trenches and bio-retention cells.

Analysis of Sediment Reduction with VFS and Diversion Channel with Enhancements in SWAT Landuse-Subbasin Overland Flow and VFS Modules

  • Park, Youn-Shik;Kim, Jong-Gun;Kim, Nam-Won;Engel, Bernie;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.752-757
    • /
    • 2009
  • In the last decade, many methods such as greet chamber, reservoir, or debris barrier, have been utilized to manage and prevent muddy water problem. The Vegetative Filter Strip (VFS) has been thought to be one of the most effective methods to trap sediment effectively. The VFS are usually installed at the edge of agricultural areas adjacent to stream or drainage ditches, and it has been shown that the VFS effectively removes pollutants transported with upland runoff. But, if the VFS is installed without any scientific analysis of rainfall-runoff characteristics, soil erosion, and sediment analysis, it may not reduce the sediment as much as expected. Although Soil and Water Assessment Tool (SWAT) model has been used worldwide for many hydrologic and Non-Point Source Pollution (NPSP) analysis at a watershed scale. but it has many limitations in simulating the VFS. Because it considers only 'filter strip width' when the model estimates sediment trapping efficiency, and does not consider the routing of sediment with overland flow option which is expected to maximize the sediment trapping efficiency from upper agricultural subbasin to lower spatially-explicit filter strip. Therefore, the SWAT overland flow option between landuse-subbasins with sediment routing capability was enhanced with modifications in SWAT watershed configuration and SWAT engine. The enhanced SWAT can simulate the sediment trapping efficiency of the VFS in the similar way as the desktop VFSMOD-w system does. Also it now can simulate the effects of overland flow from upper subbasin to reflect the increased runoff volume at the receiving subbasin, which is what is occurring at the field if no diversion channel is installed. In this study, the enhanced SWAT model was applied to small watershed located at Jaun-ri in South Korea to simulate diversion channel and spatially-explicit VFS. It was found that approximately sediment can be reduced by 31%, 65%, 68%, with diversion channel, the VFS, and the VFS with diversion channel, respectively.

  • PDF