• Title/Summary/Keyword: Non-point Source

Search Result 715, Processing Time 0.024 seconds

Runoff Characteristics of Non-point Pollutants Source in Suwon City (수원시 비점오염물질의 유출 특성)

  • Chi, Hong-Jin;Lee, Sang-Eun;Lee, Jae-Dong
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.493-505
    • /
    • 2013
  • This study was to investigate the runoff characteristics of non-point pollutants source at the urban area in Suwon city. The highest T-N and T-P concentration of rainfall runoff observed in agricultural area. In residential area, the highest $BOD_5$ and SS concentration of rainfall runoff was investigated. During rainfall events, the peak concentrations of SS and $BOD_5$ were observed after 1~2 hours of rainfall in urban area. Whereas, the peak concentrations occurred within 1~2 hours after rainfall and then the highest concentrations of SS and $BOD_5$ sharply decreased, showing strong first flush effect in urban area. The EMC results indicated that the highest value of T-N and T-P in agricultural area was observed. While residential area was shown the lowest EMC value as T-N and T-P. Non-point pollutant loads on the land use types in urban area were investigated in the order of residential>industrial>agricultural>highway. $BOD_5$ and SS loads on urban watershed were investigated in the order of Suwon>Hwangguji>Seoho>Wonchunri. Whereas, T-N and T-P loads on urban watershed were investigated in the order of Hwangguji>Suwon>Wonchunri>Seho.

Determination of EMC and MFFn Rainfall Runoff in Songcheon, Doam Lake Watershed (도암호 유역 송천에서의 강우유출수 분석을 통한 EMC와 초기세척비율 (MFFn) 산정)

  • Kwon, Hyeokjoon;Kim, Jonggun;Lim, Kyoungjae;Kim, Dongjin;Hong, Eunmi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.4
    • /
    • pp.13-22
    • /
    • 2020
  • The Doam Lake watershed has a significant impact on the downstream water system due to nutrients and sediment outflow during rainfall caused by steep slopes, soil losses, and fertilization. These non-point sources are unclear in the discharge area and are affected by land use patterns, soil characteristics, and topographical features of the watershed. Therefore, this study conducted rainfall monitoring from July to October 2019 in Songcheon upstream of the Doam Lake watershed, one of the non-point pollution source management areas. Then, after analyzing rainfall runoff, Event Mean Concentration (EMC) and Mass First Flush ratio (MFFn) were calculated to compare and analyze the characteristics of rainfall and the non-point pollutant discharge. As a result of the analysis, it showed various non-point pollutant emission characteristics for each rainfall event. In addition, the concentration of EMC and the MFFn were affected by the average rainfall intensity and the maximum rainfall intensity, and were not significantly affected by the number of antecedent drying days. In the future, it is expected that effective non-point source reduction measures and management measures according to rainfall intensity through continuous monitoring and analysis will be needed.

Characteristics of Roadside Non-point Pollution and Applicability of Reduction Facilities in Paldang Water Source Protection Zone (팔당 상수원 보호구역내 도로비점오염의 특성 및 저감시설의 적용성 연구)

  • Cho, Hye Jin;Song, Meeyoung
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.294-299
    • /
    • 2020
  • Based on the combined results of field surveys and analyses of the road structure and traffic flow, we propose a new plan for reducing roadside non-point pollution in the Paldang Water Source Protection Zone. The results show that the soil surrounding the roads in Paldang is highly permeable, which mitigates the need for filtration facilities. Roads flanked by steep slopes are found to facilitate the reduction of non-point roadside pollution through vegetation and soils along road slopes without the need for pollution reduction facilities. These results highlight the need for a flexible roadside non-point pollution reduction plan for roadside non-point pollution, which can be tailored to compliment relevant regulations and design standards after analyzing the characteristics of the target road.

Method for Calculating the Pollution Load Amount of Agricultural Non-Point Sources Using Land Cover Map (토지피복지도를 활용한 농업비점오염원 오염부하량 산정에 관한 연구)

  • Yu, Jieun;Kim, Yoonji;Sung, Hyun-Chan;Lee, Kyung-il;Choi, Ji-yong;Jeon, Seung-woo
    • Journal of Environmental Science International
    • /
    • v.29 no.12
    • /
    • pp.1249-1260
    • /
    • 2020
  • Non-point source pollutants have characteristics the render them difficult to manage owing to the uncertainty of flow paths. As agricultural non-point sources account for more than 57% of non-point source pollutants, the necessity for management is increasing. This study examines the possibility of utilizing land cover maps to suggest a more appropriate method of setting management priority for agricultural non-point sources in the Daecheong Lake area and draws implications by comparing the results derived using the cadastral map, as mentioned in the TMDL Basic Policy. To define the prioritized areas for management, the pollution load was calculated for each subbasin using the formula from the TMDL technical guidelines. As a result, the difference in the average pollution load between the land cover map and cadastral map ranged from 11.6% to 21% among the subbasins. In almost all subbasins, there were differences in the ranking of management priorities depending on the land information that was used. In addition, it was found that it was reasonable to use the level 3 land cover map to calculate the load generated by the land system for examining the implementation goals and methods of each data and comparing them with satellite images.

A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling (빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Jung, Youngwook;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.23-39
    • /
    • 2014
  • An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.

An Experimental Study on Filtration Efficiency of Sand Filter Layers to TSS and COD in Non-point Source Pollutant (분산형 빗물 저류조용 모래 여과층을 적용한 도심지 비점오염원의 TSS와 COD 정화효율에 대한 실험적 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Choi, Hangseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1477-1488
    • /
    • 2014
  • Prevalent construction of impermeable pavements in urban areas causes diverse water-related environmental issues, such as lowering ground water levels and shortage of water supply for the living. In order to resolve such problems, a rainwater reservoir can be an effective and useful solution. The rainwater reservoir facilitates the hydrologic cycle in urban areas by temporarily retaining precipitation-runoff within a shallow subsurface layer for later use in a dry season. However, in order to use the stored water of precipitation-runoff, non-point source pollutants mostly retained in initial rainfall should be removed before being stored in the reservoir. Therefore, the purification system to filter out the non-point source pollutants is essential for the rainwater reservoir. The conventional soil filtration technology is well known to be able to capture non-point source pollutants in a economical and efficient way. This study adopted a sand filter layer (SFL) as a non-point source pollutant removal system in the rainwater reservoir, and conducted a series of lab-scale chamber tests and field tests to evaluate the pollutant removal efficiency and applicability of SFL. During the laboratory chamber experiments, three types of SFL with the different grain size characteristics were compared in the chamber with a dimension of $20cm{\times}30cm{\times}60cm$. To evaluate performance of the reservoir systems, the concentration of the polluted water in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) were measured and compared. In addition, a reduction in hydraulic conductivity of SFL due to pollutant clogging was indirectly estimated. The optimum SFL selected through the laboratory chamber experiments was verified on the in-situ rainwater reservoir for field applicability.

Analysis of Runoff Characteristics of Non-point Sources Pollutant and Application of BMP Using BASINS/WinHSPF Model (BASINS/WinHSPF 모형을 이용한 비점오염물질 유출특성 분석과 최적관리기법 적용)

  • Kim, Min Joo;Kim, Tae Geun
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.2
    • /
    • pp.88-100
    • /
    • 2014
  • This study analyzed runoff characteristics of non-point sources pollutant and evaluated removal of pollution by BMP(Best Management Practice) using BASINS/WinHSPF model. Hourly meterological data including input data was provided from 2010 to 2011 year to run HSPF model in Miho stream watershed. As the results of calibration and validation of the model, the model could be successfully performed to simulate the flow and water quality parameters. The apprehensive area of non-point source pollution was chosen by non-point source pollution per area of a tributary to the Miho stream and applied constructed wetland in area chosen. Three scenarios were based on installation area of an constructed wetland and HSPF model would be applied to estimate the pollutant removals through the constructed wetland. The removal rates of pollutants through the constructed wetland were estimated with the runoff and water quality parameters by the comparisons of before and after the constructed wetland application.

Estimation of non-point pollution reduction effect of Haean Catchment by application of Nature-based Solutions (자연기반해법 적용에 따른 강원도 양구군 해안면의 비점오염 저감 효과 추정)

  • Lee, Ji-Woo;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.47-62
    • /
    • 2022
  • The Ministry of Environment has been working to reduce the impact on biodiversity, ecosystems, and social costs caused by soil runoff from highland Agricultural fields by setting up non-point pollution source management districts. To reduce soil loss, runoff path reduction technology has been applied, but it has been less cost effective. In addition, non-point pollution sources cause environmental conflicts in downstream areas, and recently highland Agricultural fields are becoming vulnerable to climate change. The Ministry of Environment is promoting the optimal management plan in earnest to convert arable land into forests and grasslands, but since non-point pollution is not a simple environmental problem, it is necessary to approach it from the aspect of NbS(Nature-Based Solution). In this study, a scenario for applying the nature-based solution was established for three subwatersheds west of Haean-myeon, Yanggu-gun, Gangwon-do. The soil loss distribution was spatialized through GeoWEPP and the amount of soil loss was compared for the non-point pollution reduction effect of mixed forests and grasslands. When cultivated land with a slope of 20% or more and ginseng fields were restored to perennial grasslands and mixed forests, non-point pollution reduction effects of about 32% and 29.000 tons compared to the current land use were shown. Also, it was confirmed that mixed forest rather than perennial grassland is an effective nature-based solution to reduce non-point pollution.

Design Model of Constructed Wetlands for Water Quality Management of Non-point Source Pollution in Rural Watersheds (농촌유역의 비점원 오염 수질관리를 위한 인공습지 설계모형)

  • 최인욱;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.96-105
    • /
    • 2002
  • As an useful water purification system for non-point source pollution in rural watersheds, interests in constructed wetlands are growing at home and abroad. It is well known that constructed wetlands are easily installed, no special managemental needs, and more flexible at fluctuating influent loads. They have a capacity for purification against nutrient materials such as phosphorus and nitrogen causing eutrophication of lentic water bodies. The Constructed Wetland Design Model (CWDM), developed through this study is consisted mainly of Database System, Runoff-discharge Prediction Submodel, Water Quality Prediction Submodel, and Area Assessment Submodel. The Database System includes data of watershed, discharge, water quality, pollution source, and design factors for the constructed wetland. It supplies data when predicting water quality and calculating the required areas of constructed wetlands. For the assessment of design flow, the GWLF (Generalized Watershed Loading Function) is used, and for water quality prediction in streams estimating influent pollutant load, Water Quality Prediction Submodel, that is a submodel of DSS-WQMRA model developed by previous works is amended. The calculation of the required areas of constructed wetlands is achieved using effluent target concentrations and area calculation equations that developed from the monitoring results in the United States. The CWDM is applied to Bokha watershed to appraise its application by assessing design flow and predicting water quality. Its application is performed through two calculations: one is to achieve each target effluent concentrations of BOD, SS, T-N and T-P, the other is to achieve overall target effluent concentrations. To prove the validity of the model, a comparison of unit removal rates between the calculated one from this study and the monitoring result from existing wetlands in Korea, Japan and United States was made. As a result, the CWDM could be very useful design tool for the constructed wetland in rural watersheds and for the non-point source pollution management.

Non-point Source Quantification Analysis Using SWAT in Nakdong River Watershed (유역모형을 이용한 낙동강 유역에서의 비점오염원 정량화)

  • HwangBo, Hyun;Kim, Dong-Il;Yoon, Young-Sam;Han, Kun-Yeun
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.4
    • /
    • pp.367-381
    • /
    • 2010
  • Recent urbanization and abnormal weather have induced enormous changes in the characteristics of both runoff and pollutant occurrence. Thus, sophisticated watershed modeling of water quality is required. In order to manage non point sources in a watershed, quantitative analysis should be preliminarily performed. However, it is difficult to conduct quantitative analysis since complex natural phenomenon need to be reflected in the modeling. Also, travel time analysis for pollutants and separation of point and non point sources are not easy to carry out. The objective of this study is to quantify non point sources in watershed using soil and land use map and to make the full use of the results in managing non point sources. To do this, non point sources are quantified using a watershed model, SWAT (Soil and Water Assessment Tools). The result of study conform with result of National Institute of Environmental Research.