• Title/Summary/Keyword: Non-parametric methods

Search Result 271, Processing Time 0.026 seconds

Nonparametic Kernel Regression model for Rating curve (수위-유량곡선을 위한 비매개 변수적 Kernel 회귀모형)

  • Moon, Young-Il;Cho, Sung-Jin;Chun, Si-Young
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.1025-1033
    • /
    • 2003
  • In common with workers in hydrologic fields, scientists and engineers relate one variable to two or more other variables for purposes of predication, optimization, and control. Statistics methods have improved to establish such relationships. Regression, as it is called, is indeed the most commonly used statistics technique in hydrologic fields; relationship between the monitored variable stage and the corresponding discharges(rating curve). Regression methods expressed in the form of mathematical equations which has parameters, so called parametric methods. some times, the establishment of parameters is complicated and uncertain. Many non-parametric regression methods which have not parameters, have been proposed and studied. The most popular of these are kernel regression method. Kernel regression offer a way of estimation the regression function without the specification of a parametric model. This paper conducted comparisons of some bandwidth selection methods which are using the least squares and cross-validation.

A Study on Road Noise Extraction Methods for Listening (청음용 자동차 로드노이즈 추출 방법 연구)

  • Kook, Hyung-Seok;Kim, Hyoung-Gun;Cho, Munhwan;Ih, Kang-Duck
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.844-850
    • /
    • 2016
  • This study pertains to the extraction of the road noise component of signals from a vehicle's interior noise via the traditional frequency domain and time domain system identification methods. For road noise extraction based on the frequency domain system identification method, the appropriate matrix inversion strategy is investigated and causal and non-causal impulse response filters are compared. Furthermore, appropriate data lengths for the frequency domain system identification method are investigated. In addition to the traditional road noise extraction methods based on frequency domain system identification, a new approach to extract road noise via the time domain system identification method based on a parametric input-output model is proposed and investigated in the present study. In this approach, instead of constructing a higher order model for the full-band road noise, input and output signals are processed in the subband domain and lower order parametric models optimal to each subband are determined. These parametric models are used to extract road noises in each subband; the full band road noise is then reconstructed from the subband road noises. This study shows that both the methods in the frequency domain and the time domain successfully extract the road noise from the vehicle's interior noise.

Frequency Analysis Using Bootstrap Method and SIR Algorithm for Prevention of Natural Disasters (풍수해 대응을 위한 Bootstrap방법과 SIR알고리즘 빈도해석 적용)

  • Kim, Yonsoo;Kim, Taegyun;Kim, Hung Soo;Noh, Huisung;Jang, Daewon
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.105-115
    • /
    • 2018
  • The frequency analysis of hydrometeorological data is one of the most important factors in response to natural disaster damage, and design standards for a disaster prevention facilities. In case of frequency analysis of hydrometeorological data, it assumes that observation data have statistical stationarity, and a parametric method considering the parameter of probability distribution is applied. For a parametric method, it is necessary to sufficiently collect reliable data; however, snowfall observations are needed to compensate for insufficient data in Korea, because of reducing the number of days for snowfall observations and mean maximum daily snowfall depth due to climate change. In this study, we conducted the frequency analysis for snowfall using the Bootstrap method and SIR algorithm which are the resampling methods that can overcome the problems of insufficient data. For the 58 meteorological stations distributed evenly in Korea, the probability of snowfall depth was estimated by non-parametric frequency analysis using the maximum daily snowfall depth data. The results of frequency based snowfall depth show that most stations representing the rate of change were found to be consistent in both parametric and non-parametric frequency analysis. According to the results, observed data and Bootstrap method showed a difference of -19.2% to 3.9%, and the Bootstrap method and SIR(Sampling Importance Resampling) algorithm showed a difference of -7.7 to 137.8%. This study shows that the resampling methods can do the frequency analysis of the snowfall depth that has insufficient observed samples, which can be applied to interpretation of other natural disasters such as summer typhoons with seasonal characteristics.

Quasi-linearization of non-linear systems under random vibration by probablistic method (확률론 방법에 의한 불규칙 진동 비선형 계의 준선형화)

  • Lee, Sin-Young;Cai, G.Q.
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.785-790
    • /
    • 2008
  • Vibration of a non-linear system under random parametric excitations was evaluated by probablistic methods. The non-linear characteristic terms of a system were quasi-linearized and excitation terms were remained as they were given. An analytical method where the square mean of error was minimized was ysed. An alternative method was an energy method where the damping energy and rstoring energy of the linearized system were equalized to those of the original non-linear system. The numerical results were compared with those obtained by Monte Carlo simulation. The comparison showed the results obtained by Monte Carlo simulation located between those by the analytical method and those by the energy method.

  • PDF

Vibration Evaluation of Non-linear System under Random Excitations by Probabilistic Method (불규칙 가진을 받는 비선형계의 확률론적 진동평가)

  • Lee Sin-Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.113-114
    • /
    • 2006
  • Vibration of a non-linear system under random excitations was evaluated by probabilistic methods. The non-linear characteristic terms of a system structure were quasi-linearized and excitation terms were remained as they were. An analytical method where the square mean of error was minimized was used. An alternative method was an energy method where the damping energy and restoring energy of the linearized system were equalized to those of the original non-linear system. The numerical results were compared with those obtained by Monte Carlo simulation. The comparison showed the results obtained by Monte Carlo simulation located between those by the analytical method and those by the energy method.

  • PDF

Long-Term Trend Analyses of Water Qualities in Nakdong River Based on Non-Parametric Statistical Methods (비모수 통계기법을 이용한 낙동강 수계의 수질 장기 경향 분석)

  • Kim, Joo-Hwa;Park, Seok-Soon
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.1
    • /
    • pp.63-71
    • /
    • 2004
  • The long-tenn trend analyses of water qualities were performed for 49 monitoring stations located in Nakdong River. Water quality parameters used in this study are the monthly data of BOD(Biological Oxygen Demand), TN(Total Nitrogen) and TP(Total Phosphorus) measured from 1990 to 1999. The long-tenn trends were analyzed by Seasonal Mann-Kendall Test and Locally WEighted Scatter plot Smoother(LOWESS). Nakdong river was divided into four subbasins, including upstream watershed, midstream watershed, western downstream watershed and eastern downstream watershed. The results of Seasonal Mann-Kendall Test indicated that there would be no trends of BOD in upstream watershed, western and eastern downstream watershed. Trends of BOD were downward in midstream watershed. For TN and TP, there were upward trends in all of watersheds. But LOWESS curves suggested that BOD, TN and TP concentrations generally increased between 1990 and 1996, then resumed decreasing.

A Study on the Geometric Constraint Solving with Graph Analysis and Reduction (그래프의 분석과 병합을 이용한 기하학적제약조건 해결에 관한 연구)

  • 권오환;이규열;이재열
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.2
    • /
    • pp.78-88
    • /
    • 2001
  • In order to adopt feature-based parametric modeling, CAD/CAM applications must have a geometric constraint solver that can handle a large set of geometric configurations efficiently and robustly. In this paper, we describe a graph constructive approach to solving geometric constraint problems. Usually, a graph constructive approach is efficient, however it has its limitation in scope; it cannot handle ruler-and-compass non-constructible configurations and under-constrained problems. To overcome these limitations. we propose an algorithm that isolates ruler-and-compass non-constructible configurations from ruler-and-compass constructible configurations and applies numerical calculation methods to solve them separately. This separation can maximize the efficiency and robustness of a geometric constraint solver. Moreover, the solver can handle under-constrained problems by classifying under-constrained subgraphs to simplified cases by applying classification rules. Then, it decides the calculating sequence of geometric entities in each classified case and calculates geometric entities by adding appropriate assumptions or constraints. By extending the clustering types and defining several rules, the proposed approach can overcome limitations of previous graph constructive approaches which makes it possible to develop an efficient and robust geometric constraint solver.

  • PDF

Genetic Programming based Illumination Robust and Non-parametric Multi-colors Detection Model (밝기변화에 강인한 Genetic Programming 기반의 비파라미터 다중 컬러 검출 모델)

  • Kim, Young-Kyun;Kwon, Oh-Sung;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.780-785
    • /
    • 2010
  • This paper introduces GP(Genetic Programming) based color detection model for an object detection and tracking. Existing color detection methods have used linear/nonlinear transformatin of RGB color-model and improved color model for illumination variation by optimization or learning techniques. However, most of cases have difficulties to classify various of colors because of interference of among color channels and are not robust for illumination variation. To solve these problems, we propose illumination robust and non-parametric multi-colors detection model using evolution of GP. The proposed method is compared to the existing color-models for various colors and images with different lighting conditions.

The Effects of Relaxation Music on the Body Flexibility and Stress (이완음악이 신체유연성과 스트레스에 미치는 영향)

  • Lee, Kwang-jae;Kim, Dong-hun
    • Journal of Korean Physical Therapy Science
    • /
    • v.22 no.2
    • /
    • pp.37-42
    • /
    • 2015
  • Background : The purpose of this study is to identify how the relaxation music listening during exercise influences body flexibility and stress. Methods : Twenty healthy adults 20s and 30s who lack of body flexibility were recruited and each subjects performed exercise during the relaxation music listening or no listening. Bach, aria of linear G was used as the relaxation music. The experiment was conducted for 4 weeks. In this study, PASW ver 18.0 was utilized to perform non-parametric tests for comparisons. Result : The result with respect to the dependent variables are as follows: When non-parametric tests were conducted to compare body flexibility at the test of the right ear touch behind head by left hand and the stretching hands test between the two groups after exercise, they showed significant differences in statistical terms (p<.05). Conclusion : From the above results of the study it was found that the application of the relaxation music during the exercise is effective, it improved the body flexibility of the right ear touch behind head by left hand and the stretching hands more than the exercise without the relaxation music did. The outcome of the experiment may provide basic data for developing an effective way to increase body flexibility.

  • PDF

Risk Evaluation of Slope Using Principal Component Analysis (PCA) (주성분분석을 이용한 사면의 위험성 평가)

  • Jung, Soo-Jung;Kim, -Yong-Soo;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.69-79
    • /
    • 2010
  • To detect abnormal events in slopes, Principal Component Analysis (PCA) is applied to the slope that was collapsed during monitoring. Principal component analysis is a kind of statical methods and is called non-parametric modeling. In this analysis, principal component score indicates an abnormal behavior of slope. In an abnormal event, principal component score is relatively higher or lower compared to a normal situation so that there is a big score change in the case of abnormal. The results confirm that the abnormal events and collapses of slope were detected by using principal component analysis. It could be possible to predict quantitatively the slope behavior and abnormal events using principal component analysis.