• 제목/요약/키워드: Non-operational shock

검색결과 9건 처리시간 0.024초

하드 디스크 드라이브 동작 상태 충격 시에 램프 충돌 유무에 따른 디스크와 슬라이더의 거동해석 (Analysis of dynamic characteristics between disk and slider with operational shock in hard disk drive)

  • 김민재;임건엽;박경수;박노철;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.975-977
    • /
    • 2014
  • Recently, As portability of storage device has been increased, it is important to analyze the precise anti-shock analysis. For non-operational shock analysis, the accuracy of non-operational shock simulation has been improved. However, because operational shock analysis includes nonlinear process, it is hard to get clear result from operational shock simulation. In this paper, by using Lagrange multiplier method, the FE model including ramp-disk contact of nonlinear process will be analyzed. Through this, we find ramp-disk contact affect the dynamic of slider. Additionally, for the more accurate analysis, we should include ramp-disk contact process at the FE model.

  • PDF

하드 디스크 드라이브 비 동작 충격 시에 내부 파트들의 동 특성에 대한 연구 (A study on dynamic behavior of inner parts with non-operational shock in hard disk drive)

  • 최용호;최종학;임건엽;서준호;박노철
    • 정보저장시스템학회논문집
    • /
    • 제9권2호
    • /
    • pp.32-35
    • /
    • 2013
  • Nowadays, function related to anti-vibration and anti-shock of storage devices is required because of portability. Therefore, many hard disk drive (HDD) studies about external shock and vibration have been performed. Especially, many studies are performed with non-operational shock. Most studies have used the fixed condition between spindle system and base when they wanted to analyze dynamic behavior of inner parts in simulation. But spindle system has actually stiffness and damping coefficient. Maybe difference of value would be happened between fixed condition and spring condition. So, we measured FRF of spindle system to know stiffness and damping coefficient in HDD. And we studied on dynamic behavior of inner parts by using calculated stiffness and damping coefficient. As a result, we confirmed the difference as boundary condition of spindle system.

내충격성 향상을 위한 HDD Actuator의 거동 연구 (Analysis of Shock Mechanism and Actuator Behavior of HDD)

  • 손진승;좌성훈;이행수;홍민표
    • 소음진동
    • /
    • 제11권3호
    • /
    • pp.449-454
    • /
    • 2001
  • The shock performance of hard disk drives has been a serious issue for portable computers and AV application HDD. Focusing on the motion of an actuator, we investigated non-operational shock mechanism and studied several parameters that affect the shock performance by experimental analysis. It was found that there are two important factors fort the actuator to endure high shock revel. One is a shock transmissibility and the other is a beating between the arm blade and the suspension. To generalize the shock transmissibility, the concept of shock response spectrum was introduced. The shock response spectrum of the actuator system was obtained experimentally and compared with that of an analytical single degree of freedom model. It was found that there was a good agreement. The first bending natural frequency of the arm blade was found to be the most important factor for the low shock transmissibility. By applying the shock response spectrum and avoiding the beating, we could design an actuator of high shock performance.

  • PDF

초소형 광자기 드라이브용 HGA의 동적 충격 시뮬레이션 (Dynamic Shock Simulation of Head-gimbal Assembly in Micro MO Drives)

  • 오우석;홍어진;박노철;양현석;박영필
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.189-194
    • /
    • 2004
  • As a disk drive becomes widely used in portable environments, one of the important requirements is durability under severe environmental condition, especially, resistance to mechanical shock. An important challenge in the disk recording is to improve disk drive robustness in shock environments. If the system comes In contact with outer shock disturbance, the system gets critical damage in head-gimbal assembly or disk. This paper describes analysis of a HGA(head-gimbal assembly) in micro MO drives to shock loading during both non-operating state and operating state. A finite element model which consists of the disk, suspension, slider and air bearing was used to find structural response of micro MO drives. In the operational case. the air bearing is approximated with four linear elastic springs. The commercially available finite element solver, ANSYS/LS-DYNA, is used to simulate the shock response of the HGA in micro MO drives. In this paper, the mechanical robustness of the suspension is simuiated considering the shock responses of the HGA.

  • PDF

Performance Evaluation of Hinge Driving Separation Nut-type Holding and Releasing Mechanism Triggered by Nichrome Burn Wire

  • LEE, Myeong-Jae;LEE, Yong-Keun;OH, Hyun-Ung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제16권4호
    • /
    • pp.602-613
    • /
    • 2015
  • As one of the mission payloads to be verified through the cube satellite mission of Cube Laboratory for Space Technology Experimental Project (STEP Cube Lab), we developed a hinge driving separation nut-type holding and releasing mechanism. The mechanism offers advantages, such as a large holding capacity and negligible induced shock, although its activation principle is based on a nylon cable cutting mechanism triggered by a nichrome burn wire generally used for cube satellite applications for the purpose of holding and releasing onboard appendages owing to its simplicity and low cost. The basic characteristics of the mechanism have been measured through a release function test, static load test under qualification temperature limits, and shock measurement test. In addition, the structural safety and operational functionality of the mechanism module under launch and on-orbit environments have been successfully demonstrated through a vibration test and thermal vacuum test.

CFD study of the PTS experiment in ROCOM test facility

  • Carija, Zoran;Ledic, Fran;Sikirica, Ante;Niceno, Bojan
    • Nuclear Engineering and Technology
    • /
    • 제52권12호
    • /
    • pp.2803-2811
    • /
    • 2020
  • With the aging of nuclear reactors, embrittlement of the reactor pressure vessel (RPV) steel, as a consequence of routine operations, is highly probable. To ensure operational integrity and safety, prediction and mitigation of compromising damage, brought on by pressurized thermal shock (PTS) following an emergency procedure, is of utmost importance. Computational fluid dynamics (CFD) codes can be employed to predict these events and have therefore been an acceptable method for such assessments. In this paper, CFD simulations of a density driven ECC state in the ROCOM facility are analyzed. Obtained numerical results are validated with the experimental measurements. Considerable attention is attributed to the boundary conditions and their influence, specifically outlet definitions, in order to determine and adequately replicate the non-active pumps in the facility. Consequent analyses focused on initial conditions as well as on the temporal discretization and inner iterations. Disparities due to different turbulent modelling approaches are investigated for standard RANS models. Based on observed trends for different cases, a definitive simulation setup has been established, results of which have been ultimately compared to the measurements.

Empirical Initial Scantling Equations on Optimal Structural Design of Submarine Pressure Hull

  • Oh, Dohan;Koo, Bonguk
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제4권1호
    • /
    • pp.7-15
    • /
    • 2018
  • The submarine is an underwater weapon system which covertly attacks the enemy. Pressure hull of a submarine is a main system which has to have a capacity which can improve the survivability (e.g., protection of crews) from the high pressure and air pollution by a leakage of water, a fire caused by outside shock, explosion, and/or operational errors. In addition, pressure hull should keep the functional performance under the harsh environment. In this study, optimal design of submarine pressure hull is dealt with 7 case studies done by analytic method and then each result's adequacy is verified by numerical method such as Finite Element Analysis (FEA). For the structural analysis by FEM, material non-linearity and geometric non-linearity are considered. After FEA, the results by analytic method and numerical method are compared. Weight optimized pressure hull initial scantling methods are suggested such as a ratio with shell thickness, flange width, web height and/or relations with radius, yield strength and design pressure (DP). The suggested initial scantling formulae can reduce the pressure hull weight from 6% and 19%.

On the Use of Standing Oblique Detonation Waves in a Shcramjet Combustor

  • Fusina, Giovanni;Sislian, Jean P.;Schwientek, Alexander O.;Parent, Bernard
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2004년도 제22회 춘계학술대회논문집
    • /
    • pp.671-686
    • /
    • 2004
  • The shock-induced combustion ramjet (shcramjet) is a hypersonic airbreathing propulsion concept which over-comes the drawbacks of the long, massive combustors present in the scramjet by using a standing oblique detonation wave (a coupled shock-combustion front) as a means of nearly instantaneous heat addition. A novel shcramjet combustor design that makes use of wedge-shaped flameholders to avoid detonation wave-wall interactions is proposed and analyzed with computational fluid dynamics (CFD) simulations in this study. The laminar, two-dimensional Navier-Stokes equations coupled with a non-equilibrium hydrogen-air combustion model based on chemical kinetics are used to represent the physical system. The equations are solved with the WARP (window-allocatable resolver for propulsion) CFD code (see: Parent, B. and Sislian, J. P., “The Use of Domain Decomposition in Accelerating the Convergence of Quasihyperbolic Systems”, J. of Comp. Physics, Vol. 179, No. 1,2002, pages 140-169). The solver was validated with experimental results found in the literature. A series of steady-state numerical simulations was conducted using WARP and it was deter-mined by means of thrust potential calculations that this combustor design is a viable one for shcramjet propulsion: assuming a shcramjet flight Mach number of twelve at an altitude of 36,000 m, the geometrical dimensions used for the combustor give rise to an operational range for combustor inlet Mach numbers between six and eight. Different shcramjet flight Mach numbers would require different combustor dimensions and hence a variable geometry system in or-der to be viable.

  • PDF

국부 중등도 온열요법의 암치료 효과 (Effects of Regional Hyperthermia with Moderate Temperature on Cancer Treatment)

  • 강치덕;김선희
    • 생명과학회지
    • /
    • 제26권9호
    • /
    • pp.1088-1096
    • /
    • 2016
  • 중등도 온열요법이 종양세포에 대한 세포독성, 종양혈관에 미치는 영향 및 면역학적 영향 등 다양한 항종양 활성을 가지고 있음에도 불구하고, 중등도 온열요법은 그 자체만으로는 항암효과가 뚜렷하지 않아, 방사선치료나 항암제 치료와 병용하여 암치료에 사용되고 있으면서, 심각한 부작용이 없이 어느 정도의 긍정적인 효과를 보이고 있다. 모든 연구에서 긍정적인 결과를 보이지 못한 것은 열충격 반응 그 자체가 온열요법의 항암효과를 방해하기 때문이다. 그러므로 온열요법의 효과를 증가시키기 위해서는 온열요법의 항암효과에 대한 부정적인 영향을 제거해야 한다. 암세포뿐만 아니라 혈관, 면역 세포 및 결체조직 등을 포함하고 있는 종양조직의 열 스트레스에 대한 반응은 매우 복잡하지만, 임상적으로 사용되고 있는 약물 중 열 스트레스 반응을 조절할 수 있는 약물들이 암환자의 온열요법 치료 효과를 개선시킬 수 있는 지에 대한 연구가 필요하다. 이 종설에서는 현재 임상에서 사용하고 있는 온열요법 장치로서 최신의 기술이며, 중등도 온도가 정상 조직에 대한 부작용 없이 기존 치료법의 효과를 증가시킬 수 있기 때문에, 비침습적 체외용 고주파 중등도 온열요법을 중심으로 다룬다.