• Title/Summary/Keyword: Non-mixture

Search Result 1,055, Processing Time 0.028 seconds

Numerical Study on the Effects of Spray Properties of Water Mist on the Fire Suppression Mechanism (미분무수 특성이 화재억제 메커니즘에 미치는 영향에 대한 수치해석적 연구)

  • Bae, Kang-Youl;Chung, Hee-Taeg;Kim, Hyoung-Bum
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.175-184
    • /
    • 2017
  • The numerical investigation on the effects of water-mist characteristics has been carried out for the fire suppression mechanism. The FDS are used to simulate the interaction of fire plume and water mists, and program describes the fire-driven flows using LES turbulence model, the mixture fraction combustion model, the finite volume method of radiation transport for a non-scattering gray gas, and conjugate heat transfer between wall and gas flow. The numerical model is consisted of a rectangular enclosure of $L{\times}W{\times}H=1.5{\times}1.5{\times}2.0m^3$ and a water mist nozzle that be installed 1.8 m from fire pool. In the present study, the parameters of nozzle for simulation are the droplet size and the spray velocity. The droplet size influences to fire flume on fire suppression more than the spray velocity because of the effect of the terminal velocity. The optimal condition for fire suppression is that the droplet size and the spray velocity are $100{\mu}m$ and 20 m/s respectively.

Electrostatic Charging Measurement and PVC Separation of Triboeletrostatically Charged Plastic Particles using a Fluidized Bed Tribocharger

  • Shin, Jin-Hyouk;Lee, Jae-Keun
    • Journal of ILASS-Korea
    • /
    • v.7 no.2
    • /
    • pp.7-15
    • /
    • 2002
  • A particle flow visualization, electrostatic charging measurement and separation of triboelectrically charged particles in the external electric field by a fluidized bed tribocharger are conducted for the removal of PVC particles from mixed waste plastics. The laboratory-scale triboelectrostatic separation system consists of the fluidized bed tribocharger, a separation chamber, a collection chamber and a controller. PVC and PET particles can be imparted negative and positive surface charges respectively due to the difference of triboelectric charging series between particles and particles in the fluidized bed tribocharger, and can be separated by passing them through an external electric field. To visualize these charged particles, He-Ne laser is used with cylindrical lenses to generate a sheet beam. In the charging measurement, the particle motion analysis system (PMAS), capable of determining particle velocity and diameter. is used to non-intrusively measure particle behavior in high strength electric field. The average charge-to-mass ratios of PVC and PET particles are $1.4\;and\;1.2{\mu}C/kg$, respectively. The highly concentrated PVC (91.9%) can be recovered with a yield of about 96.1% from the mixture of PVC and PET materials for a single-stage processing. The triboelectrostatic separation system using the fluidized tribocharger shows the potential to be an effective method for removing PVC from mixed plastics for waste plastic recycling.

  • PDF

Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars

  • Yoo, Doo-Yeol;Banthia, Nemkumar
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.759-774
    • /
    • 2015
  • This study simulates the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) beams reinforced with steel and glass fiber-reinforced polymer (GFRP) rebars. For this, micromechanics-based modeling was first carried out on the basis of single fiber pullout models considering inclination angle. Two different tension-softening curves (TSCs) with the assumptions of 2-dimensional (2-D) and 3-dimensional (3-D) random fiber orientations were obtained from the micromechanics-based modeling, and linear elastic compressive and tensile models before the occurrence of cracks were obtained from the mechanical tests and rule of mixture. Finite element analysis incorporating smeared crack model was used due to the multiple cracking behaviors of structural UHPFRC beams, and the characteristic length of two times the element width (or two times the average crack spacing at the peak load) was suggested as a result of parametric study. Analytical results showed that the assumption of 2-D random fiber orientation is appropriate to a non-reinforced UHPFRC beam, whereas the assumption of 3-D random fiber orientation is suitable for UHPFRC beams reinforced with steel and GFRP rebars due to disorder of fiber alignment from the internal reinforcements. The micromechanics-based finite element analysis also well predicted the serviceability deflections of UHPFRC beams with GFRP rebars and hybrid reinforcements.

Chemical Modification of Carbon Nanotubes and Preparation of Polystyrene/Carbon Nanotubes Composites

  • Ham, Hyeong-Taek;Koo, Chong-Min;Kim, Sang-Ouk;Park, Yeong-Suk;Chung, In-Jae
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.384-390
    • /
    • 2004
  • Single-walled carbon nanotubes (SWNTs) have been chemically modified through the formation of carboxylic acid functionalities or by grafting octadecylamine and polystyrene onto them. We purified SWNTs with nitric acid to remove some remaining catalysts and amorphous carbon materials. After purification, we broke the carbon nanotubes and shortened their lengths by using a 3:1 mixture of concentrated sulfuric acid and nitric acid. During these purification and cutting processes, carboxylic acid units formed at the open ends of the SWNTs. Octa-decylamine and amino-terminated polystyrene were grafted onto the cut SWNTs by condensation reactions between the amine and carboxylic acid units. The cut SWNTs did not disperse in organic solvents, but the octadecylamine-grafted and polystyrene-grafted SWNTs dispersed well in dichloromethane and aromatic solvents (e.g., benzene, toluene). Composites were prepared by mixing polystyrene with the octadecylamine-grafted or polystyrene-grafted SWNTs. Each composite had a higher dynamic storage modulus than that of a pristine polystyrene. The composites exhibited enhanced storage moduli, complex viscosities, and unusual non-terminal behavior when compared with a monodisperse polystyrene matrix because of the good dispersion of carbon nanotubes in the polystyrene matrix.

A Study of Ocean Thermal Energy Conversion Systems Using Kalina cycle and Regenerative Rankine cycle (Kalina 사이클과 재생 Rankine 사이클을 이용한 해양 온도차 발진 시스템)

  • Shin, S.H.;Jung, D.S.;Kim, C.B.;Seo, T.B.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.101-113
    • /
    • 1999
  • Thermodynamic performance of a simple Rankine cycle, regenerative Rankine cycle, and Kalina cycle for Ocean thermal Energy Conversion(OTEC) is evaluated under the same condition with various working fluids. The evaporator and condenser are modeled by a UA and LMTD method while the turbine and pump are modeled by considering isentropic efficiencies. As for the working fluids, R22, R134a, R32, propylene, ammonia are used for the Rankine cycles while ammonia/water and R32/R134a mixtures are used for Kalina cycle. Calculated results show that newly developed fluids such non-ozone depleting refrigerants as R134a and R32 perform as well as R22 and ammonia. The regenerative Rankine cycle showed a 1.2 to 2.8% increase in energy efficiency as compared to the simple Rankine cycle while the Kalina cycle with ammonia/water mixture showed a 1.8% increase in energy efficiency. The efficiency of the Kalina cycle with R32/R134a mixtures is the same as that of a simple Rankine cycle using R22. Therefore, the regenerative Rankine cycle turns out to be best choice for OTEC applications.

  • PDF

Microencapsulation of Lactic Acid Bacteria (LAB)

  • Feucht, Andreas;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.33 no.2
    • /
    • pp.229-238
    • /
    • 2013
  • Lactic acid bacteria (LAB) are added to different food products for a long time due to health beneficial effects on human host. LAB is applied in dairy products, such as yoghurt, cheese, and various fermented products, and also in non-dairy products, such as sausages. However, reaching the human gut alive as well as in a sufficient cell amount to exert positive health effects is still a big challenge, due to LAB sensitive character and vulnerability against harsh and detrimental conditions in human digestive system. Keeping physiological activity of sensitive LAB strains alive is for the formulation of novel food products with a probiotic health claim of utmost interest, thus microencapsulation has been applied and investigated as a promising technique for a good and reliable protection. Microencapsulation allows reduced cell injury or cell loss by retaining cells within the encapsulating membrane and can be enforced by spray-drying, emulsion, extrusion, and a range of other technologies in combination with an appropriate coating material, such as alginate, chitosan, and mixture of these two polymers. In this review, established and well-studied microencapsulation techniques with their favored coating materials, as well as the recent applications of microencapsulated LAB into dairy products will be discussed.

The Preparation of a Polyimide Membrane for the Separation of Water-Acetic Acid Mixture through Pervaporation (Polyimide 막에 의한 물-초산계의 투과증발 분리)

  • 박영태
    • Membrane Journal
    • /
    • v.9 no.4
    • /
    • pp.215-220
    • /
    • 1999
  • The asymmetric polyimide [PI] membrane with good solvent-resisting and heat-resisting properties was prepared by using the phase inversion method from polyamic acid, and its pervaporation separation characteristics of water-acetic acid system were studied. It was appeared from the prepared membranes that the best non-solvent of polyamie acid for the phase inversion was toluene. The best heat-treatment condition for the imidization of polyamic acid was 1 hr heating at each of the temperatures, 373, 473, and 573 K The thermal durability and chemical stability during the pervaporation separation of water-acetic acid of the prepared PI membrane was superior. The pervaporation characteristics of prepared membrane were 180 of separation factor and 0.5 kg/$m^2$hr of total flux for 80 wt% acetic acid feed.

  • PDF

The Fundamental Study on the decision of the weight of water required to cement hydration (시멘트 페이스트의 수화수량 정량화에 관한 기초적 연구(구조 및 재료 \circled2))

  • 이준구;박광수;김석열;장문기;김한중
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.266-271
    • /
    • 2000
  • This study was performed to find out how much water the cement hydration reaction need. It is real situation that it is difficult to find out the amount of chemical combined water with stoichiometric chemical reaction form. Because several variation occurred during hydration reaction it's not easy to divide water which used at cement paste mixture. In this study high temperature(105$^{\circ}C$) dry method was used to divide evaporable water and non-evaporable water. The last is combined water chemically and some free water absorbed to products of hydration physically. The test was processed with variation of water cement ratio from 10% to 45% with 5% intervals. The weight of cement paste specimens were measured after dry for 72hours at each checking time(0.5, 1, 3, 5, 10, 24, 48, 72, 168hour). In this study some conclusions such as follows were derived. Firstly, Pure combined water contents required at cement hydration result in 23.3percent of the weight of cement. Secondly, The sufficient mixing water needed to fully hydrated cement result in about 40∼45percent of weight of cement. That is, gel pores water could be about 16.7∼21.7percent of weight of cement.

  • PDF

A Study on the Survey of Production Condition of Jeans in Casual Brands (캐주얼 브랜드의 청바지 생산 실태 조사에 관한 연구)

  • Uh, Mi-Kyung;Suh, Mi-A
    • The Research Journal of the Costume Culture
    • /
    • v.15 no.4
    • /
    • pp.702-712
    • /
    • 2007
  • The purpose of this study was to understand the current trend with regard to the material of jeans and the making method of jeans pattern and the characteristics of washing processing through the overall production status of jeans in casual brands and to offer the basic data for producing the high efficient jeans. The results were as follows. According to the survey of production status of jeans in casual brands, the fabric mixture was highest in the order of non-stretch denim 100% cotton, stretch denim cotton/spandex mix and denim with $1{\sim}2%$ weft direction spandex mix. The most frequently used processing method for denim was in the order of normal finishing, mercerization finishing, soft finishing and pigment finishing. The most frequently used method of washing finishing for jeans was in the order of forming by embossing washing, bio stone washing, normal washing, bio washing, and bio stone bleach washing. The average shrinkage was higher on waist circumference and pants length of warp direction rather than hips circumference, thigh circumference, hem circumference of weft direction.

  • PDF

Dielectric Study of Methyl Acrylate-Alcohol Mixtures Using Time Domain Reflectometry

  • Dharmalingam, K.;Ramachandran, K.;Sivagurunathan, P.;Prabhakar , B.;Khirade, P.W.;Mehrotra, S.C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.2040-2044
    • /
    • 2006
  • Dielectric studies of methyl acrylate with 1-propanol, 1-butanol, 1-heptanol and 1-octanol binary mixtures have been carried out over the frequency range from 10 MHz to 10 GHz at temperatures of 283, 293, 303 and 313 K using Time Domain Reflectometry (TDR) for various concentrations. The Kirkwood correlation factor and excess inverse relaxation time were determined and discussed to yield information on the molecular structure and dynamics of the mixture. The values of the static dielectric constant, relaxation time and the Kirkwood correlation factor decrease with increased concentration of methyl acrylate in alcohol. The Bruggman plot shows a non-linearity of the curves for all the systems studied indicates the heterointeraction which may be due to hydrogen bonding of the OH group of alcohol with C=O of the methyl acrylate. The excess inverse relaxation time values are negative for all the systems at all the temperatures indicates that the solute-solvent interaction hinders the rotation of the dipoles of the system.