• Title/Summary/Keyword: Non-mixture

Search Result 1,052, Processing Time 0.027 seconds

Coronary Artery Stenosis Quantification for Computed Tomography Angiography Based on Modified Student's t-Mixture Model

  • Sun, Qiaoyu;Yang, Guanyu;Shu, Huazhong;Shi, Daming
    • ETRI Journal
    • /
    • v.39 no.5
    • /
    • pp.662-671
    • /
    • 2017
  • Coronary artery disease (CAD) is a major cause of death in the world. As a non-invasive imaging modality, computed tomography angiography (CTA) is now usually used in clinical practice for CAD diagnosis. Precise quantification of coronary stenosis is of great interest for diagnosis and treatment planning. In this paper, a novel cluster method based on a Modified Student's t-Mixture Model is applied to separate the region of vessel lumen from other tissues. Then, the area of the vessel lumen in each slice is computed and the estimated value of it is fitted with a curve. Finally, the location and the level of the most stenoses are captured by comparing the calculated and fitted areas of the vessel. The proposed method has been applied to 17 clinical CTA datasets and the results have been compared with reference standard degrees of stenosis defined by an expert. The results of the experiment indicate that the proposed method can accurately quantify the stenosis of the coronary artery in CTA.

Pool Boiling Heat Transfer Coefficient of HFC32/HFC152a on a Plain Surface (평판 표면에서 HFC32/HFC152a 혼합냉매의 풀 비등 열전달계수)

  • Kang, Dong-Gyu;Lee, Yohan;Jung, Dongsoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.9
    • /
    • pp.484-492
    • /
    • 2013
  • Nucleate pool boiling heat transfer coefficients (HTCs) are measured with HFC32/HFC152a mixture at several compositions. All data are taken at the liquid pool temperature of $7^{\circ}C$, on a horizontal plain square surface of $9.53{\times}9.53$ mm, with heat fluxes of 10 $kW/m^2$ to 100 $kW/m^2$ with an interval of 10 $kW/m^2$, in the increasing order of heat flux. Test results show that the HTCs of these mixtures are up to 45% lower than those of the ideal HTCs calculated by a linear mixing rule with pure fluids' HTCs, due to the mass transfer resistance associated with non-azeotropic refrigerant mixtures. Pool boiling data show the deduction in HTCs with an increase in GTD of the mixture. The present mixture data agree well with five well known correlations, within 20% deviation.

Study on Combustion Characteristics of the Opposed Flames for Different Mixing Rates of Carbon Dioxide and Water Vapor (이산화탄소 및 수중기의 혼합율에 따른 대향류 화염의 연소특성 연구)

  • Park, Won-Hee;Jo, Bum-Jin;Kim, Tae-Kuk
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.49-54
    • /
    • 2004
  • Detailed flame structures of the opposed flames formed for different oxidant compositions are studied numerically. The detailed chemical reactions are modeled by using the CHEMKIN code. Only the $CO_2$ and $H_2O$ are assumed to participate by absorbing the radiative energy while all other gases are assumed to be transparent. The discrete ordinates method and the narrow band based WSGGM with a gray gas regrouping technique are applied for modeling the radiative transfer through non-homogeneous and non-isothermal combustion gas mixtures generated by the opposed flow flames. The results show that the different radiation model can cause different results for flame structures and the WSGGM with gray gas regrouping is successful in modeling the opposed flames with non-gray gas mixture. The numerical results show that the increases in $CO_2$ and $H_2O$ compositions cause to reduce the flame temperature and the NO formation.

  • PDF

Study on the Performance of Heat Pump Using Non-azeotropic Refrigerant Mixtures R-22+R-114 (비공비혼합냉매 R-22+R-114를 이용한 열펌프의 성능에 관한 연구)

  • 박기원;구학근;오후규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2131-2137
    • /
    • 1993
  • This study, examines the performance and the heat pump cycle systematizing characteristics for non-azeotropic refrigerant systems. In order to conduct such an examination, the cycle characteristics of heat pumps for pure R-22, R-114, and their mixtures were experimentally investigated. The results show that cooling/heating capacities for the mixtures was more suited at the evaporating temperature of $5^{\circ}C$ than that of $0^{\circ}C$, $-5^{\circ}C$, and $-10^{\circ}C$. The C.O.P of the 50 wt% mixtures was considerably higher than for pure R-22, and the compression power of the 25 wt% was as much as 60% lower than that of pure R-22. Even small fractional mixture variations can lead to significant changes in the characteristics of the heat pump cycle. This experiment verified the importance of accurate weight fractions of refrigerant mixtures.

Dynamic Properties of Silty Sands at High Amplitude (Basic Properties) (Silt질 모래의 고변형률 진동특성(기본성질))

  • 송정락;김수일
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.27-34
    • /
    • 1988
  • Soils behave non-linearly at high strain. This study investigated the non-linear behavior of silty sands (Mixture of Ottawa Sand and Quartz Powder) by resonant column tests. The results were ·compared with Ramberg-Osgood's non-linear equation. From the tests, it was shown that the change of shear modulus and damping ratio was more sharp at low fine content, high void ratio and low confining pressure. It was also found that famberg-Osgood parameter, R was approximately 2.0, however the range of C varied from 200 to 3200.

  • PDF

An Experimental Study on Sealing Improvements of Non-Contact Type Seal for Oil Mist Lubrication

  • Na, Byung-Chul;Chun, Keyoung-Jin;Han, Dong-Chul
    • KSTLE International Journal
    • /
    • v.3 no.2
    • /
    • pp.79-83
    • /
    • 2002
  • Sealing an oil-air mixture plays important roles to have an enhanced lubrication for high speed spindle. High speed spindle requires non-contact type of sealing mechanism. Current work emphases on the investigation of the air jet effect on the protective collar type labyrinth seal. To improve the sealing capability of conventional labyrinth seal, air jet was injected against through the leakage flow, It has a combined geometry of a protective collar type and an air jet type. Both of a numerical analysis by CFD (Computational Fluid Dynamics) and experimental measurements are carried out to verify sealing improvement The sealing effects of the leakage clearance and the air jet magnitude are studied in various parameters. The results of pressure drop in the experiment match reasonably to those of the simulation by introducing a flow coefficient Effect of sealing improvement is explained as decreasing of leakage clearance by air jetting. Thus, sealing effect is improved by amount of air jetting even though clearance becomes larger.

Finite Volume Analysis of a Supersonic Non-Equilibrium Flow Around an Axisymmetric Blunt Body

  • Haoui, R.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.2
    • /
    • pp.59-68
    • /
    • 2010
  • The aim of this work is to analyze high temperature flows around an axisymmetric blunt body taking into account chemical and vibrational non-equilibrium state for air mixture species. For this purpose, a finite volume methodology is employed to determine the supersonic flow parameters around the axisymmetric blunt body. This allows the capture of a shock wave before a blunt body placed in supersonic free stream. The numerical technique uses the flux vector splitting method of Van Leer. Here, adequate time stepping parameters, along with Courant, Friedrich, Lewis coefficient and mesh size level are selected to ensure numerical convergence, sought with an order of $10^{-8}$.

Facile preparation of superhydrophobic thin films using non-aligned carbon nanotubes

  • Goh, Yee-Miin;Han, Kok Deng;Tan, Lling-Lling;Chai, Siang-Piao
    • Advances in nano research
    • /
    • v.2 no.4
    • /
    • pp.219-225
    • /
    • 2014
  • A simple preparation method on creating superhydrophobic surface using non-aligned carbon nanotubes (CNTs) was demonstrated. Superhydrophobic CNT thin films were prepared by doping a sonicated mixture of CNTs and chloroform onto a glass slide. Water contact angles of the CNT thin films were measured using a contact angle goniometer. The thin films were characterized using laser microscope and scanning electron microscope. Experimental results revealed that the highest average contact angle of $162{\pm}2^{\circ}$ was achieved when the films' thickness was $1.628{\mu}m$. The superhydrophobic surface was stable as the contact angle only receded from $162{\pm}2$ to $157{\pm}2^{\circ}$ after 10 min under normal atmospheric condition.

Numerical Study of Detonation for AN based non-ideal explosives via an Eulerian multi-material method (Ammonium Nitrate 계열의 폭발물의 폭굉에 관한 연구)

  • Kim, Kihong;Lee, Jinwook;Yoh, Jaiick
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.89-91
    • /
    • 2012
  • The numerical simulation for detonation failure of ammonium nitrate (AN) based non-ideal explosives is carried out with an accurate and state-of-the-art Eulerian method. Detonation failure is readily observed in the rate stick experiments utilizing the AN mixture explosives and the inert confinements of varying thicknesses. The composition of non-ideal explosives and thickness of the confinements influence the characteristics of detonation failure. Calculated results are compared against the experimental data of both unconfined and confined rate stick problems and provide a reliable guideline to establish a fine-tuned chemical kinetic model for detonation failure.

  • PDF

Adaptive Control Design for Missile using Neural Networks Augmentation of Existing Controller (기존제어기와 신경회로망의 혼합제어기법을 이용한 미사일 적응 제어기 설계)

  • Choi, Kwang-Chan;Sung, Jae-Min;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1218-1225
    • /
    • 2008
  • This paper presents the design of a neural network based adaptive control for missile is presented. The application model is Exocet MM40, which is derived from missile DATCOM database. Acceleration of missile by tail Fin control cannot be controllable by DMI (Dynamic Model Inversion) directly because it is non-minimum phase system. So, the inner loop consists of DMI and NN (Neural Network) and the outer loop consists of PI controller. In order to satisfy the performances only with PI controller, it is necessary to do some additional process such as gain tuning and scheduling. In this paper, all flight area would be covered by just one PI gains without tuning and scheduling by applying mixture control technique of conventional controller and NN to the outer loop. Also, the simulation model is designed by considering non-minimum phase system and compared the performances to distinguish the validity of control law with conventional PI controller.