• 제목/요약/키워드: Non-lubrication

검색결과 141건 처리시간 0.022초

형상설계에 관한 고속주축용 비접촉 시일의 밀봉특성 연구 (Design Effect of Sealing Characteristics of Non-Contact Type Seal for High Speed Spindle)

  • 나병철;전경진;한동철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.610-614
    • /
    • 1996
  • Sealing of lubricat-air mixture in the high performance machining conte is one of most the important characteristics to carry out enhanced lubrication. High speed spindle requires non-contact type of sealing mechanism. Evaluating an optimum seal design to minimize leakage is concerned in the aspect of flow control. Effect of geometry and leakage path are evaluated according to variation of sealing geometry, Velocity, pressure, turbulence intensity of profile is calculated to fina more efficient geometry and variables. This offers a methodological way of enhancement seal design for high speed spindle. The working fluid is regarded as two phases that are mixed flow of oil phase and air phase. It is more reasonable to simulate an oil jet or oil mist type high speed spindle lubrication. Turbulence and compressible flow model are used to evaluate a flow characteristic, This paper arranges a geometry of mostly used non-contact type seal and analyzes leakage characteristics to minimize a leakage on the same sealing area.

  • PDF

Environmentally-Conscious Lubrication for Superfinishing

  • Malkin, Stephen;Lee, Jongchan;Masurkar, Sameer;Hickok, Evan
    • 한국기계가공학회지
    • /
    • 제2권1호
    • /
    • pp.5-14
    • /
    • 2003
  • Cutting fluids used for superfinishing are usually mineral based oils With sulfur and chlorine additives. These cutting fluids are an environmental hazard and can adversely affect the health of personnel on the shop floor. The present investigation was undertaken to explore the possible alternative use of environmentally-conscious cutting fluids for superfinishing. Unlike mineral oils, these environmentally-conscious cutting fluids are biodegradable and non-hazardous. Experiments were conducted for testing an ester oil manufactured by Accu-Lube applied in miniscule amounts using the Minimum Quantity Lubrication (MQL) technique. A significant improvement in stock removal was found with the 6 stones tested. The specific energy values associated with the process were also significantly lower than those obtained previously with conventional straight oils and the water based synthetic fluid, indicative of better lubrication, while the surface roughness was comparable. These tests prove that MQL with ester oils can be a very effective environmentally-conscious alternative to conventional straight oils.

  • PDF

윤활유 종류에 따른 주축 열변위의 특성 평가 (Characteristics Evaluation of Spindle Thermal Displacement with kinds of Lubrication Oil)

  • 강순준;이갑조;김종관
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.93-98
    • /
    • 2003
  • High speed precision machines have been introduced to the CNC industry in order to improve productivity, shorten the appointed date of delivery and reduce the prime cost. High speed machines have more functions then general machines, and they were proved in performance. The production and sales of the high speed machines have been increased not only in domestic market but also all over the world. Accordingly, machines are faster, there are lots of problems to be solved. One of the most difficult problems is the thermal displacement on the main spindle due to generated heat while the spindle is rotated in high speed. Since the thermal displacement directly effects the quality of the machined parts, utmost efforts to minimize the thermal displacement have to be given from the beginning of designing machines. In practice, variety of methods are attempted and practiced to minimize the thermal displacement such as design of symmetrical frame, adoption of high speed bearings, application of compensation system using non-contact sensor and use of forced circulating lubrication system with oil cooler. Even if these variable methods have been practically used in the industrial field, generated heat has not been Perfectly Prevented lienee, in this paper, the characteristics of thermal displacement were investigated when several kinds of oil were tested for a high speed machine with forced circulating lubrication system within the same atmosphere and under the same conditions.

  • PDF

윤활유 종류에 따른 주축 열변위의 특성 평가 (Characteristics Evaluation of Spindle Thermal Displacement with kinds of Lubrication Oil)

  • 강순준;이갑조;김종관
    • 한국공작기계학회논문집
    • /
    • 제13권2호
    • /
    • pp.47-53
    • /
    • 2004
  • High speed precision machines have been introduced to the CNC industry in order to improve productivity, shorten the appointed date of delivery and reduce the prime cost. High speed machines have more functions then general machines, and they were proved in performance. The production and sales of the high speed machines have been increased not only in domestic market but also all over the world. Accordingly, machines are faster, there are lots of problems to be solved. One of the most difficult problems is the thermal displacement on the main spindle due to generated heat while the spindle is rotated in high speed. Since the thermal displacement directly effects the quality of the machined parts, utmost efforts to minimize the thermal displacement have to be given from the beginning of designing machines. In practice, variety of methods are attempted and practiced to minimize the thermal displacement such as design of symmetrical frame, adoption of high speed bearings, application of compensation system using non-contact sensor and use of forced circulating lubrication system with oil cooler. Even if these variable methods have been practically used in the industrial field, generated heat has not been perfectly prevented. Hence, in this paper, the characteristics of thermal displacement were investigated when several kinds of oil were tested for a high speed machine with forced circulating lubrication system within the same atmosphere and under the same conditions.

구름접촉에 의한 SM55C의 마멸 거동 (Wear behavior of SM55C steel by rolling contact)

  • 박범수;채영훈;김석삼
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.240-247
    • /
    • 2002
  • The rolling wear behavior of SM55C is investigated under lubrication. This is a comparative tribological behavior of heat treatment effect for SM55C. Rolling wear test method is used for Ball-on-disk type. Specimens can be classified into two main groups: as-annealing and non-annealing. As result of wear behavior, flanking initial time of non-annealing specimen keep at retard but it have not under high normal load. One of the notable features of annealing specimen is steady flanking initial time for a normal load in this experiment. Failure mechanism of SM55C is due to the fatigue wear such like flanking, pitting etc.. Flanking leads to abruptly fracture of worn surface. Fracture mechanism has a connection with normal load and polishing direction of specimens.

  • PDF

터보챠저 저어널 베어링에서 물과 윤활유가 혼합될 때 베어링 성능에 관한 연구 (Study on Bearing Performance Involving the Mixture of Water within Engine Oil in a Turbocharger Journal Bearing)

  • 전상명
    • Tribology and Lubricants
    • /
    • 제27권4호
    • /
    • pp.183-192
    • /
    • 2011
  • In this study, using the governing equations for thermohydrodyamic lubrication involving the homogeneous mixture of incompressible fluid derived by based on the principle of continuum mechanics, it is discussed the effects of water dispersed within engine oil on the performance of high speed journal bearing of a turbocharger. The governing equations are the general equations being able to be applied on the mixture of Newtonian fluid and non-Newtonian fluid. Here, the fluid viscosity index, n of power-law non-Newtonian fluid is supposed to be 1 for the application of the journal bearing on a turbocharger lubricated with the mixture of two Newtonian fluids, water dispersed within engine oil. The results related with the bearing performance are showed that the friction force and bearing load capacity decrease as increasing the volume percent of water.

FRICTION AND WEAR AT SLIDING CERAMIC SURFACES

  • Kong, Hosung
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1992년도 제15회 학술강연회초록집
    • /
    • pp.1-20
    • /
    • 1992
  • 1. Ceramics as engineering Materials Ceramic \ulcorner :'material based on inorganic non-metallic compounds' Oxygen, Carbon, Nitrogen with metal (Al, Si) -cheap, plentiful and widespread element in the Earth -dirt: ceramic

  • PDF

표면가공무늬가 사판식 액셜 피스톤펌프의 밸브부 윤활특성에 미치는 영향에 관한 연구 (Surface Lay Effects on the Lubrication Characteristics in the Valve Part of a Swash-plate Type Axial Piston Pump)

  • 신정훈;강보식;김경웅
    • Tribology and Lubricants
    • /
    • 제28권1호
    • /
    • pp.12-18
    • /
    • 2012
  • This application study of a swash-plate type axial piston pump was concerned about the lubrication characteristics between cylinder barrel and valve plate which are the main rotating body and its opposite sliding part respectively. A computer simulation was implemented to assess bearing and sealing functions of the fluid film between cylinder barrel and valve plate. A numerical algorithm was developed to facilitate simultaneous calculations of dynamic cylinder pressure, 3 degree-of-freedom barrel motions considering inertia effect, and fluid film pressure assuming full fluid film lubrication regime. Central clearance, tilt angle, and azimuth angle of the rotating body were calculated for each time step. Surface waviness was found to be an influential factor due to the small fluid film thickness which can appear in flat land bearings. Five surface lays which can form on the lubrication surface in accordance with machining process were defined and analyzed using the simulation tool. Oil leakage flow and frictional torque in the fluid film between cylinder barrel and valve plate were also calculated to discuss in the viewpoint of energy loss. The simulation results showed that in actual sliding conditions proper surface non-flatness can make a positive effect on the energy efficiency and reliability of the thrust bearing.

Synthesis and Tribological Behavior of Nanocomposite Polymer Layers

  • Tsukruk, V.V.;Ahn, Hyo-Sok;Julthongpiput, D.;Kim, Doo-In
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.51-52
    • /
    • 2002
  • We report results on microtribological studies of chemically grafted nanoscale polymer layers of different architecture with thickness below 30 nm. We have fabricated the molecular lubrication coatings from elastomeric tri-block copolymers and tested two different designs of corresponding nanocomposite coatings. We observed a significant reduction of friction forces and an increase of the wear stability when a minute amount of oil was trapped within the grafted polymer layer. These polymer gel layers exhibited a very steady friction response and a small value of the coefficient of friction as compared to the initial polymer coating. A polymer 'triplex' coating has been formed by a multiple grafting technique. The unique design of this layer Includes a hard-soft-hard architecture with a compliant rubber interlayer mediating localized stresses transferred through the topmost hard layer. This architecture provides a non-linear mechanical response under a normal compression stress and allows additional dissipation of mechanical energy via the elastic rubber interlayer.

  • PDF

프로파일링을 한 원통형 로울러의 탄성유체윤활 (II) (Elastohydrodynamic Lubrication of a Profiled Cylindrical Roller (II))

  • 박태조;김경웅
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.1975-1981
    • /
    • 1991
  • 본 연구에서는 완전히 불균일한 격자계를 사용하여 프로파일링을 한 원통형로 울러의 프로파일링 시작점 부근에서의 압력분포 및 유막형상과 함께 무차원변수의 변 화에 따른 최소유막의 거동을 상세히 조사하고자 한다. 이 결과에서 실제 로울리 베 어링의 로울러 프로파일의 설계시에 적용할 수 있는 새로운 기준을 제시하고자 한다.