• Title/Summary/Keyword: Non-local filtering

Search Result 38, Processing Time 0.026 seconds

Energy Efficiency Enhancement of TICK -based Fuzzy Logic for Selecting Forwarding Nodes in WSNs

  • Ashraf, Muhammad;Cho, Tae Ho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.9
    • /
    • pp.4271-4294
    • /
    • 2018
  • Communication cost is the most important factor in Wireless Sensor Networks (WSNs), as exchanging control keying messages consumes a large amount of energy from the constituent sensor nodes. Time-based Dynamic Keying and En-Route Filtering (TICK) can reduce the communication costs by utilizing local time values of the en-route nodes to generate one-time dynamic keys that are used to encrypt reports in a manner that further avoids the regular keying or re-keying of messages. Although TICK is more energy efficient, it employs no re-encryption operation strategy that cannot determine whether a healthy report might be considered as malicious if the clock drift between the source node and the forwarding node is too large. Secure SOurce-BAsed Loose Synchronization (SOBAS) employs a selective encryption en-route in which fixed nodes are selected to re-encrypt the data. Therefore, the selection of encryption nodes is non-adaptive, and the dynamic network conditions (i.e., The residual energy of en-route nodes, hop count, and false positive rate) are also not focused in SOBAS. We propose an energy efficient selection of re-encryption nodes based on fuzzy logic. Simulation results indicate that the proposed method achieves better energy conservation at the en-route nodes along the path when compared to TICK and SOBAS.

Depth From Defocus using Wavelet Transform (웨이블릿 변환을 이용한 Depth From Defocus)

  • Choi, Chang-Min;Choi, Tae-Sun
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.5 s.305
    • /
    • pp.19-26
    • /
    • 2005
  • In this paper, a new method for obtaining three-dimensional shape of an object by measuring relative blur between images using wavelet analysis has been described. Most of the previous methods use inverse filtering to determine the measure of defocus. These methods suffer from some fundamental problems like inaccuracies in finding the frequency domain representation, windowing effects, and border effects. Besides these deficiencies, a filter, such as Laplacian of Gaussian, that produces an aggregate estimate of defocus for an unknown texture, can not lead to accurate depth estimates because of the non-stationary nature of images. We propose a new depth from defocus (DFD) method using wavelet analysis that is capable of performing both the local analysis and the windowing technique with variable-sized regions for non-stationary images with complex textural properties. We show that normalized image ratio of wavelet power by Parseval's theorem is closely related to blur parameter and depth. Experimental results have been presented demonstrating that our DFD method is faster in speed and gives more precise shape estimates than previous DFD techniques for both synthetic and real scenes.

A study on non-local image denoising method based on noise estimation (노이즈 수준 추정에 기반한 비지역적 영상 디노이징 방법 연구)

  • Lim, Jae Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.518-523
    • /
    • 2017
  • This paper proposes a novel denoising method based on non-local(NL) means. The NL-means algorithm is effective for removing an additive Gaussian noise, but the denoising parameter should be controlled depending on the noise level for proper noise elimination. Therefore, the proposed method optimizes the denoising parameter according to the noise levels. The proposed method consists of two processes: off-line and on-line. In the off-line process, the relations between the noise level and the denoising parameter of the NL-means filter are analyzed. For a given noise level, the various denoising parameters are applied to the NL-means algorithm, and then the qualities of resulting images are quantified using a structural similarity index(SSIM). The parameter with the highest SSIM is chosen as the optimal denoising parameter for the given noise level. In the on-line process, we estimate the noise level for a given noisy image and select the optimal denoising parameter according to the estimated noise level. Finally, NL-means filtering is performed using the selected denoising parameter. As shown in the experimental results, the proposed method accurately estimated the noise level and effectively eliminated noise for various noise levels. The accuracy of noise estimation is 90.0% and the highest Peak Signal-to-noise ratio(PSNR), SSIM value.

Data Department Linear Combination of Weighted Order Statistics(DD-LWOS) Filtering Based on Local Statistics (국부 통계를 기반으로 한 가중차수 통계의 데이터 의존 선형조합 필터링(DD-LWOS))

  • 박동희;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.4
    • /
    • pp.639-644
    • /
    • 2002
  • Nonlinear filters which are utilized rank-order information and temporal-order information, have many proposed, in order to restore nonstationary signals which are corrupted by additive noise. In this paper, we propose a data-dependent LWOS filter whose coefficients change based on local statistics. LWOS(Linear Combination of Weighted Order Statistics) filters[1]which also utilized two informations, and have properties of efficient impulsive and nonimpulsive noise attenuation and sufficiently details and edges preservation. DD-LWOS filters can remove non-impulsive oises while preserving signal details. DD-LWOS2 filter gets more better performance than DD-LWOS filter when input image corrupted by additive noise which includes Impulsive noise components.

Oriental Painting non-photorealistic Rendering by using a Single 2-D Image (한 장의 2차원 이미지를 이용한 동양화적 비사실적 랜더링)

  • Bang, Seung-Ju;Park, Kyoung-Ju
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.366-370
    • /
    • 2010
  • This paper presents an automatic Oriental ink-rendering technique that recreates the artistic style of Oriental paintings from a single image. In Oriental paintings are characterized by strokes with various thickness and disordered dispersion. In this study, a stroke drawing method was developed based on the canny edge detector and radial curvature that are suitable for lines with varied thickness even along a single stroke. A dispersion-shading method was likewise developed by applying a set of iterated dual-filtering, and intensity exaggeration methods. The dispersion-shading method is designed to increase the local shade details, to decrease the global shade. Unlike the existing watercolor-rendering and abstraction system the proposed dispersion-shading method achieves disordered shade details rather than simplification.

3D Non-local Means(NLM) Algorithm Based on Stochastic Distance for Low-dose X-ray Fluoroscopy Denoising (저선량 X-ray 영상의 잡음 제거를 위한 확률 거리 기반 3차원 비지역적 평균 알고리즘)

  • Lee, Min Seok;Kang, Moon Gi
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.4
    • /
    • pp.61-67
    • /
    • 2017
  • Low-dose X-ray fluoroscopic image sequences to avoid radiation exposure risk are contaminated by quantum noise. To restore these noisy sequences, we propose a 3D nonlocal means (NLM) filter based on stochastic distancesed can be applied to the denoising of X-ray fluoroscopic image sequences. The stochastic distance is obtained within motion-compensated noise filtering support to remove the Poisson noise. In this paper, motion-adaptive weight which reflected the frame similarity is proposed to restore the noisy sequences without motion artifact. Experimental results including comparisons with conventional algorithms for real X-ray fluoroscopic image sequences show the proposed algorithm has a good performance in both visual and quantitative criteria.

Color2Gray using Conventional Approaches in Black-and-White Photography (전통적 사진 기법에 기반한 컬러 영상의 흑백 변환)

  • Jang, Hyuk-Su;Choi, Min-Gyu
    • Journal of the Korea Computer Graphics Society
    • /
    • v.14 no.3
    • /
    • pp.1-9
    • /
    • 2008
  • This paper presents a novel optimization-based saliency-preserving method for converting color images to grayscale in a manner consistent with conventional approaches of black-and-white photographers. In black-and-white photography, a colored filter called a contrast filter has been commonly employed on a camera to lighten or darken selected colors. In addition, local exposure controls such as dodging and burning techniques are typically employed in the darkroom process to change the exposure of local areas within the print without affecting the overall exposure. Our method seeks a digital version of a conventional contrast filter to preserve visually-important image features. Furthermore, conventional burning and dodging techniques are addressed, together with image similarity weights, to give edge-aware local exposure control over the image space. Our method can be efficiently optimized on GPU. According to the experiments, CUDA implementation enables 1 megapixel color images to be converted to grayscale at interactive frames rates.

  • PDF

Image Denoising Using Nonlocal Similarity and 3D Filtering (비지역적 유사성 및 3차원 필터링 기반 영상 잡음제거)

  • Kim, Seehyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1886-1891
    • /
    • 2017
  • Denoising which is one of major research topics in the image processing deals with recovering the noisy images. Natural images are well known not only for their local but also nonlocal similarity. Patterns of unique edges and texture which are crucial for understanding the image are repeated over the nonlocal region. In this paper, a nonlocal similarity based denoising algorithm is proposed. First for every blocks of the noisy image, nonlocal similar blocks are gathered to construct a overcomplete data set which are inherently sparse in the transform domain due to the characteristics of the images. Then, the sparse transform coefficients are filtered to suppress the non-sparse additive noise. Finally, the image is recovered by aggregating the overcomplete estimates of each pixel. Performance experiments with several images show that the proposed algorithm outperforms the conventional methods in removing the additive Gaussian noise effectively while preserving the image details.

Estimation of Individual Street Trees Using Simulated Airborne LIDAR Data (모의 항공 라이다 자료를 이용한 개별 가로수의 추정)

  • Cho, Du-Young;Kim, Eui-Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.3
    • /
    • pp.269-277
    • /
    • 2012
  • Street trees are one of useful urban facilities that reduce carbon dioxide and provide green space in urban areas. They are usually managed by local government, and it is effective to use aerial LIDAR data in order to acquire information such as the location, height and crown width of street tree systematically. In this research, algorithm was proposed that improves the accuracy of extracting top points of street trees and separates the region of individual street trees from aerial LIDAR data. In order to verify the proposed algorithm, a simulated aerial LIDAR data that exactly knows the number, height and crown width of street trees was created. As for the procedure of data processing, filtering that separates ground and non-ground points from LIDAR data was first conducted in order to separate the region of individual street trees. An estimated non-street tree points were then removed from non-ground points, and the top points of street trees were estimated. Region of individual street trees was determined by using the intersecting point of straight line that connects top point and ground point of street tree. Through the experiment by using simulated data, it was possible to refine wrongly estimated points occurred by determining tree tops and to determine the positional information, height, crown width of street trees through the determination of region of street trees.

A Coherent Algorithm for Noise Revocation of Multispectral Images by Fast HD-NLM and its Method Noise Abatement

  • Hegde, Vijayalaxmi;Jagadale, Basavaraj N.;Naragund, Mukund N.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.12spc
    • /
    • pp.556-564
    • /
    • 2021
  • Numerous spatial and transform-domain-based conventional denoising algorithms struggle to keep critical and minute structural features of the image, especially at high noise levels. Although neural network approaches are effective, they are not always reliable since they demand a large quantity of training data, are computationally complicated, and take a long time to construct the model. A new framework of enhanced hybrid filtering is developed for denoising color images tainted by additive white Gaussian Noise with the goal of reducing algorithmic complexity and improving performance. In the first stage of the proposed approach, the noisy image is refined using a high-dimensional non-local means filter based on Principal Component Analysis, followed by the extraction of the method noise. The wavelet transform and SURE Shrink techniques are used to further culture this method noise. The final denoised image is created by combining the results of these two steps. Experiments were carried out on a set of standard color images corrupted by Gaussian noise with multiple standard deviations. Comparative analysis of empirical outcome indicates that the proposed method outperforms leading-edge denoising strategies in terms of consistency and performance while maintaining the visual quality. This algorithm ensures homogeneous noise reduction, which is almost independent of noise variations. The power of both the spatial and transform domains is harnessed in this multi realm consolidation technique. Rather than processing individual colors, it works directly on the multispectral image. Uses minimal resources and produces superior quality output in the optimal execution time.