• Title/Summary/Keyword: Non-local filtering

Search Result 38, Processing Time 0.029 seconds

Non-Local Mean based Post Processing Scheme for Performance Enhancement of Image Interpolation Method (이미지 보간기법의 성능 개선을 위한 비국부평균 기반의 후처리 기법)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.3
    • /
    • pp.49-58
    • /
    • 2020
  • Image interpolation, a technology that converts low resolution images into high resolution images, has been widely used in various image processing fields such as CCTV, web-cam, and medical imaging. This technique is based on the fact that the statistical distributions of the white Gaussian noise and the difference between the interpolated image and the original image is similar to each other. The proposed algorithm is composed of three steps. In first, the interpolated image is derived by random image interpolation. In second, we derive weighting functions that are used to apply non-local mean filtering. In the final step, the prediction error is corrected by performing non-local mean filtering by applying the selected weighting function. It can be considered as a post-processing algorithm to further reduce the prediction error after applying an arbitrary image interpolation algorithm. Simulation results show that the proposed method yields reasonable performance.

An adaptive nonlocal filtering for low-dose CT in both image and projection domains

  • Wang, Yingmei;Fu, Shujun;Li, Wanlong;Zhang, Caiming
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.2
    • /
    • pp.113-118
    • /
    • 2015
  • An important problem in low-dose CT is the image quality degradation caused by photon starvation. There are a lot of algorithms in sinogram domain or image domain to solve this problem. In view of strong self-similarity contained in the special sinusoid-like strip data in the sinogram space, we propose a novel non-local filtering, whose average weights are related to both the image FBP (filtered backprojection) reconstructed from restored sinogram data and the image directly FBP reconstructed from noisy sinogram data. In the process of sinogram restoration, we apply a non-local method with smoothness parameters adjusted adaptively to the variance of noisy sinogram data, which makes the method much effective for noise reduction in sinogram domain. Simulation experiments show that our proposed method by filtering in both image and projection domains has a better performance in noise reduction and details preservation in reconstructed images.

Wavelet Based Non-Local Means Filtering for Speckle Noise Reduction of SAR Images (SAR 영상에서 웨이블렛 기반 Non-Local Means 필터를 이용한 스펙클 잡음 제거)

  • Lee, Dea-Gun;Park, Min-Jea;Kim, Jeong-Uk;Kim, Do-Yun;Kim, Dong-Wook;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.3
    • /
    • pp.595-607
    • /
    • 2010
  • This paper addresses the problem of reducing the speckle noise in SAR images by wavelet transformation, using a non-local means(NLM) filter originated for Gaussian noise removal. Log-transformed SAR image makes multiplicative speckle noise additive. Thus, non-local means filtering and wavelet thresholding are used to reduce the additive noise, followed by an exponential transformation. NLM filter is an image denoising method that replaces each pixel by a weighted average of all the similarly pixels in the image. But the NLM filter takes an acceptable amount of time to perform the process for all possible pairs of pixels. This paper, also proposes an alternative strategy that uses the t-test more efficiently to eliminate pixel pairs that are dissimilar. Extensive simulations showed that the proposed filter outperforms many existing filters terms of quantitative measures such as PSNR and DSSIM as well as qualitative judgments of image quality and the computational time required to restore images.

Image Optimization of Fast Non Local Means Noise Reduction Algorithm using Various Filtering Factors with Human Anthropomorphic Phantom : A Simulation Study (인체모사 팬텀 기반 Fast non local means 노이즈 제거 알고리즘의 필터링 인자 변화에 따른 영상 최적화: 시뮬레이션 연구)

  • Choi, Donghyeok;Kim, Jinhong;Choi, Jongho;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.3
    • /
    • pp.453-458
    • /
    • 2019
  • In this study we analyzed the tendency of the image characteristic by changing filtering factor for the proposed fast non local means (FNLM) noise reduction algorithm with designed Male Adult mesh (MASH) phantom through Geant4 application for tomographic emission (GATE) simulation program. To accomplish this purpose, MASH phantom for human copy was designed through the GATE simulation program. In addition, we acquired degraded image by adding Gaussian noise with a value of 0.005 using the MATALB program in MASH phantom. Moreover, in degraded image, the FNLM noise reduction algorithm was applied by changing the filtering factors, which set to 0.005, 0.01, 0.05, 0.1, 0.5, and 1.0 value, respectively. To quantitatively evaluate, the coefficient of variation (COV), signal to noise ratio (SNR), and contrast to noise ratio (CNR) were calculated in reconstructed images. Results of the COV, SNR and CNR were most improved in image with a filtering factor of 0.05 value. Especially, the COV was decreased with increasing filtering factor, and showed nearly constant values after 0.05 value of the filtering factor. In addition, SNR and CNR were showed that improvement with increasing filtering factor, and deterioration after 0.05 value of the filtering factor. In conclusion, we demonstrated the significance of setting the filtering factor when applying the FNLM noise reduction algorithm in degraded image.

Adaptive Image Restoration of Median Filter Using Local Statistics (국부 통계를 이용한 메디안 필터의 적응 영상 복원)

  • 김남철;윤장홍;황찬식
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.5
    • /
    • pp.863-867
    • /
    • 1987
  • When digital image signals are transmitted or stored, they may be usually degraded by impulsive noise such as BSC noise. Though median filtering is a very effective method to reduce the impulsive noise, it brings non-negligible distortion after filtering. Several algorithms have been proposed to reduce such a distortion, but their reconstructed image quality are inadequate in some cases and they have a difficulty in real-time processing. In this paper, an effective filtering algorithm which can not only reduce the noise effectively but also preserve the edges well and lessen the distortion greatly, is presented. The proposed algorithm is an adaptive algorithm of median filter using local statistics, based on the characteristics of human eyes. The adaptive algorithm results shwo performance improvement of up to 3-4 dB over the nonadaptive one.

  • PDF

Dual Sliding Statistics Switching Median Filter for the Removal of Low Level Random-Valued Impulse Noise

  • Suid, Mohd Helmi;Jusof, M F.M.;Ahmad, Mohd Ashraf
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1383-1391
    • /
    • 2018
  • A new nonlinear filtering algorithm for effectively denoising images corrupted by the random-valued impulse noise, called dual sliding statistics switching median (DSSSM) filter is presented in this paper. The proposed DSSSM filter is made up of two subunits; i.e. Impulse noise detection and noise filtering. Initially, the impulse noise detection stage of DSSSM algorithm begins by processing the statistics of a localized detection window in sorted order and non-sorted order, simultaneously. Next, the median of absolute difference (MAD) obtained from both sorted statistics and non-sorted statistics will be further processed in order to classify any possible noise pixels. Subsequently, the filtering stage will replace the detected noise pixels with the estimated median value of the surrounding pixels. In addition, fuzzy based local information is used in the filtering stage to help the filter preserves the edges and details. Extensive simulations results conducted on gray scale images indicate that the DSSSM filter performs significantly better than a number of well-known impulse noise filters existing in literature in terms of noise suppression and detail preservation; with as much as 30% impulse noise corruption rate. Finally, this DSSSM filter is algorithmically simple and suitable to be implemented for electronic imaging products.

Noise Removal in Magnetic Resonance Images based on Non-Local Means and Guided Image Filtering (비 지역적 평균과 유도 영상 필터링에 기반한 자기 공명 영상의 잡음 제거)

  • Mahmood, Muhammad Tariq;Choi, Young Kyu
    • KIISE Transactions on Computing Practices
    • /
    • v.20 no.11
    • /
    • pp.573-578
    • /
    • 2014
  • In this letter, we propose a noise reduction method for use in magnetic resonance images that is based on non-local mean and guided image filters. Our method consists of two phases. In the first phase, the guidance image is obtained from a noisy image by using an adaptive non-local mean filter. The spread of the kernel is adaptively by controlled by implementing the concept of edgeness. In the second phase, the noisy images and the guidance images are provided to the guided image filter as input in order to produce a noise-free image. The improved performance of the proposed method is investigated by conducting experiments on standard datasets that contain magnetic resonance images. The results show that the proposed scheme is superior over the existing approaches.

A New Liquid Crystal Color Calibration Technique Using Neural Networks and Median Filtering

  • Lee, Dae-Hee;Chung, Jae-Hun;Won, Se-Youl;Kim, Yun-Taek;Boo, Kwang-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.113-120
    • /
    • 2000
  • This study has developed a new liquid crystal calibration technique using Neural networks with median filtering and applied this technique to heat transfer measurements. To verify the validity of this new measurement technique, the local Nusselt numbers on a flat plate surface subjected to an axisymmetric impinging jet were measured and compared with the results by the conventional Hue-temperature calibration technique under the same conditions. Because the Neural networks predict the non-linear relations between temperatures and corresponding R, G, B values, Neural networks-median filtering calibration technique can utilize a much wider color band in the experiment than the Hue-temperature calibration technique, resulting in a significant reduction in the experimental time.

  • PDF

A Study on a Multiresolution Filtering Algorithm based on a Physical Model of SPECT Lesion Detectability (SPECT 이상조직 검출능 모델에 근거한 다해상도 필터링 기법 연구)

  • Kim, Jeong-Hui;Kim, Gwang-Ik
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.551-562
    • /
    • 1998
  • Amultiresolution filtering algorithm based on the physical SPECT lesion detachability provides and optimal solution for SPECT reconstruction problem. Related to the previous study, we estimated the SPECT lesion detection capability by m minimum detectable lesion sizes (MDLSs), and generated m reconstruction filters which are designed to maximize the smoothing effect at a fixed MDLS-dependent resolution level $\frac{MDLS}{4\sqrt{2In2}}$. The proposed multiresolution filtering algorithm used a coarse-to-fine approach for the m-level resolution filter images obtained from these m filters for a given projection image. First, the local homogeneity is determined for every pixel of the filter images, by comparing the local variance value computed in a window centered at the pixel and the mode determined from the distribution of the local variances. Based on the local homogeneity, the pixels declared as homogeneous are chosen from the filter image of the lowest resolution, and for the other pixels the same process is repeated for the higher resolution filter images. For the non-homogeneous pixels after this pixels after this repetition process ends, the pixel values of the highest resolution filter image are substituted. From the results of the simulated experiments, the proposed multiresolution filtering algorithm showed a strong smoothing effect in the homogeneous regions and a significant resolution improvement near the edge regions of the projection images, and so produced good adaptability effects in the reconstructed images.

  • PDF

Robust Image Hashing for Tamper Detection Using Non-Negative Matrix Factorization

  • Tang, Zhenjun;Wang, Shuozhong;Zhang, Xinpeng;Wei, Weimin;Su, Shengjun
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.2 no.1
    • /
    • pp.18-26
    • /
    • 2008
  • The invariance relation existing in the non-negative matrix factorization (NMF) is used for constructing robust image hashes in this work. The image is first re-scaled to a fixed size. Low-pass filtering is performed on the luminance component of the re-sized image to produce a normalized matrix. Entries in the normalized matrix are pseudo-randomly re-arranged under the control of a secret key to generate a secondary image. Non-negative matrix factorization is then performed on the secondary image. As the relation between most pairs of adjacent entries in the NMF's coefficient matrix is basically invariant to ordinary image processing, a coarse quantization scheme is devised to compress the extracted features contained in the coefficient matrix. The obtained binary elements are used to form the image hash after being scrambled based on another key. Similarity between hashes is measured by the Hamming distance. Experimental results show that the proposed scheme is robust against perceptually acceptable modifications to the image such as Gaussian filtering, moderate noise contamination, JPEG compression, re-scaling, and watermark embedding. Hashes of different images have very low collision probability. Tampering to local image areas can be detected by comparing the Hamming distance with a predetermined threshold, indicating the usefulness of the technique in digital forensics.

  • PDF