• 제목/요약/키워드: Non-linear Forced Torsional Vibration

검색결과 5건 처리시간 0.015초

기관축계의 비선형 다자유도 강제 비틀림진동에 관한 연구 (A Study on the Non-linear Forced Torsional Vibration for Propulsion Shaftings with Multi-Degree-of-Freedom System)

  • 김수철;이문식;장민오;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권6호
    • /
    • pp.7-14
    • /
    • 2000
  • Nowadays, the viscous damper using high viscosity oil was much to be used for engine shafting system to reduce the excessive additional stress by torsional vibration. In general, it was assumed that the viscous damper could be modelled having only damping coefficient, that is to say, whose stiffness be ignored. But it is found that there exists a jump phenomenon, as a kind of non-linear vibration, in the actual engine shafting system with a damper of high viscosity. Therefore the damper ring and the casing are modelled as two mass elastic system with a complex viscosity. Also, to analyze a non-linear phenomenon, it is assumed that the viscous damper has a linear stiffness coefficient in proportion to the angular amplitude and a non-linear stiffness coefficient in proportion to cube of the angular amplitude. For the analysis, Quasi-Newton method with BFGS(Broyden-Fletcher-Goldfarb-Shanno) formula is used. Both calculated and measured values are provided in this paper which confirm the possibility of applying non-linear theory to engine shafting system with viscous damper.

  • PDF

비선형 탄성커플링을 갖는 기관축계의 비틀림강제진동에 관한 연구 (A Study on the Forced Torsional Vibration of Engines Shafting Systems with Non-linear Elastic Couplings)

  • 박용남
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권3호
    • /
    • pp.328-336
    • /
    • 1998
  • Marine reduction gears are usually used to increase the propulsion efficiency of propellers for ships powered by medium and small sized high speed diesel engines. Most of shaft systems adopt flexible couplings to absorb the transmitted vibratory torque from the engines to the reduction gears and to prevent the chattering phenomenon of reduction gears. However some elastic couplings show non-linear characteristics due to the variable torque transmitted from the main engines and the change of ambient temperature. In this study dynamic characteristics of flexible couplings sare investigated and their effects upon various vibratory conditions of propulsion systems are clarified. A calculation program of torsional vibration for the propulsion systems are clarified. A calculation program of Results of the program developed are compared with ones of the existing linear method and propulsion systems with the elastic couplings the transfer matrix method is adopted which is found to give satisfied results.

  • PDF

점성댐퍼를 갖는 엔진 축계의 비선형 비틀림강제진동 (Nonlinear Forced Torsional Vibration for the Engine Shafting System With Viscous Damper)

  • 박용남;송성옥;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.50-58
    • /
    • 1996
  • The torsional vibration of the propulsion shafting system equipped with viscous damper is investigated. The equivalent system is modeled by a two mass softening system with Duffing's oscillator and the vibratory motion is described by non-linear differential equations of second order. The damper casing is fixed at the front-end of crankshaft and the damper's inertia ring floats in viscous silicon fluid inside of the camper casing. The excitation frenquency is proportional to the rotational speed of engine. The steady state response of the equivalent system is analyzed by the computer and for this analyzing, the harmonic balance method is adopted as a non-linear vibration analysis technique. Frequency response curves are obtained for 1st order resonance only. Jump phenomena are explained. The discriminant for the solutions of the steady state response is derived. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisions with both data, it was confirmed that Duffing's oscillator can be used in the modeling of the propulsion shafting system attached with viscous damper with non-linear stiffness.

  • PDF

점성댐퍼를 갖는 엔진 축계의 비선형 비틀림강제진동 (Nonlinear Forced Torsional Vibration for the Engine Shafting System With Viscous Damper)

  • 박용남;송성옥;김의간;전효중
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권4호
    • /
    • pp.372-372
    • /
    • 1996
  • The torsional vibration of the propulsion shafting system equipped with viscous damper is investigated. The equivalent system is modeled by a two mass softening system with Duffing's oscillator and the vibratory motion is described by non-linear differential equations of second order. The damper casing is fixed at the front-end of crankshaft and the damper's inertia ring floats in viscous silicon fluid inside of the camper casing. The excitation frenquency is proportional to the rotational speed of engine. The steady state response of the equivalent system is analyzed by the computer and for this analyzing, the harmonic balance method is adopted as a non-linear vibration analysis technique. Frequency response curves are obtained for 1st order resonance only. Jump phenomena are explained. The discriminant for the solutions of the steady state response is derived. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisions with both data, it was confirmed that Duffing's oscillator can be used in the modeling of the propulsion shafting system attached with viscous damper with non-linear stiffness.

점성댐퍼를 갖는 엔진 축계의 안정성 해석 및 비선형 비틀림강제진동 (A Study on the Stability Analysis and Non-linear Forced Torsional Vibration for the Dngine Shafting System with Viscous Damper)

  • 박용남;하창우;김의간;전효중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.282-287
    • /
    • 1996
  • The non-linear torsional vibrations of the propulsion shafting system with viscous damper are considered. The motion is modeled by non-linear differential equations of second order. the equivalent system is modeled by two mass softening system with Duffing's oscillator. The steady state response of a equivalent system is analyzed for primary resonance only. Harmonic balance method as a non-linear vibration analysis technique is used. Jump phenomena are explained. The primary unstable region obtained by the Mathieu equation is investigated. Both theoretical and measured results of the propulsion shafting system are compared with and evaluated. As a result of comparisons with both data, it was confirmed that Duffing's oscillator can be used as a analysis method in the modeling of the propulsion shafting system attached viscous damper with non-linear stiffness.

  • PDF