• Title/Summary/Keyword: Non-line of sight

Search Result 154, Processing Time 0.038 seconds

Practical Treatment of Path -Delay Error by Terrain Model in Mobile Wireless Location

  • Kim, Wuk;Lee, Jang-Gyu;Jee, Gyu-In
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.58-58
    • /
    • 2001
  • This paper shows a practical approach that is robust to the errors causing path-delay in mobile wireless location, and analyzes its performance by comparing with other methods. NLOS(non-line-of-sight) error and multipath are two big sources of positioning error in wireless location. Contrary to GPS(global positioning system), they result from the terrestrial propagation of a signal. Especially, since LOS(line-of-sight) path between a transceiver and a receiver is blocked by intermediate buildings and topography, NLOS causes a signal to be reflected and diffracted. This path-delay error is very localized, and so, it is not easy to be estimated and mitigated. To treat such localized error, therefore ...

  • PDF

Propagation Characteristics of Fan Beam in Subway Tunnel Environment for 2.4 GHz Band Wireless LAN (2.4 GHz 대역 무선 랜을 위한 지하철 터널 환경에서 Fan Beam 의 전파특성)

  • 박노준;고거다;송문규;강영진
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.298-301
    • /
    • 2003
  • 본 논문에서는 2.4 [GHz] 대역에서 1(equation omitted)2 마이크로스트림 배열 안테나를 이용한 지하철 터널내의 전파특성을 고찰하였다. 445 [m]의 터널구간에서 협대역 측정결과 LOS (Line-of-Sight)구간에 비하여 NLOS(Non-Line-of-Sight)구간에서는 수신 전력 레벨이 급격히 감소 하였으며, 10단 길이의 PN Sequence를 이용한 광대역 채널 측정에서는 Fan Beam의 평균과도지연과 RMS 지연확산이 각각 3.5736 [ns]과 11.7327 [ns]로서 원편파와 지향성 빔에 비하여 우수함을 확인하였다. 또한 전체 측정구간에 대한 평균과도지연과 RMS 지연확산의 중간값과 표준편차를 구하였고 각각의 빔에 대하여 비교하였다.

  • PDF

LOS and NLOS Path-loss Characteristics at 3.4, 5.3, and 6.4 ㎓ in an Urban Environment (3.4, 5.3, 6.4 ㎓ 대역 신호의 가시 및 비가시 구간에서의 경로손실 특성)

  • 조한신;박병성;육종관;박한규;이정수
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2002.11a
    • /
    • pp.127-131
    • /
    • 2002
  • This paper presents the a measured path-loss characteristics in urban line-of-sight(LOS) and non line-of-sight(NLOS) environments for 3.4, 5.3, and 6.4 ㎓ band signals. A two-ray model is applied to analyse the path-loss characteristics in LOS areas. In LOS areas, an empirical break point, whose distance is shorter than a theorical break point, is founded. Further, a sudden power level drop occurs at a transition point from LOS region to NLOS area and different path-loss exponents are occured various cases. The power level drop due to comer loss and path-loss exponents both increase as the distance between the transmitter and the corner increases.

  • PDF

Self-Organization of Swarm Robots Based on Color Recognition (컬러 인식에 기반을 둔 스웜 로봇의 자기 조직화 연구)

  • Jung, Hah-Min;Hwang, Young-Gi;Kim, Dong-Hun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.413-421
    • /
    • 2010
  • In the study, self-organization by color detection is proposed to overcome required constraints for existing self-organization by an external ceiling camera and communication. In the proposed self-organization, each swarm robot can follow its colleague robot and all swarm robots can follow a target by LOS(Line of Sight). The swarm robots follow the moving target by the proposed potential field, avoiding confliction with neighboring robots and obstacles. Finally, all swarm robots are reached by a sight among swarm robots. In this paper, for unicycle robots with non-holonomic constraints instead of point robot with holonomic constraints self-organization is presented, it enhances the possibility of H/W realization.

A Study on 2 X 2 MIMO Propagation Channel Characteristics for Receiving Antenna Spacings (수신 안테나 이격거리에 대한 2 X 2 MIMO 전파 채널 특성에 관한 연구)

  • Park, Se-Hyun;Yoon, Byung-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.4
    • /
    • pp.747-752
    • /
    • 2009
  • In this paper, the MIMO(Multi-Input Multi-Output) channel characteristics for Rx antenna spacing are described in the real environment, which has LOS(Ling of Sight) and NLOS (Won-Line of Sight). We developed $2\times2$ MIMO channel measurement system at 2.3GHz Wibro Band. MIMO antenna evaluation parameters such as received power, channel capacity and spatial correlation are evaluated for standard dipole antenna with 0.25, 0.5, 0.75 and 1.0 wavelength spacing at 2-position for LOS and 4-position for NLOS. The spatial correlation is distributed more than 0.9 in most LOS case which might be intricate to operate MIMO communication. MIMO antenna design need to be focused on getting spatial diversity and reducing spatial correlation in LOS case.

Experimental Study on the Effect of Antenna Polarization in WBAN Off-Body Channel (WBAN Off-Body 채널에서 안테나 편파의 영향 분석)

  • Jeon, Jaesung;Ahn, Byoungjik;Kim, Sunwoo;Choi, Jaehoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.144-151
    • /
    • 2013
  • This paper investigates the effect of antenna polarization in Wireless Body Area Network(WBAN) off-body channel. The polarizations of antenna are divided into four combinations regarding Line-of-Sight(LOS) and Non-LOS(NLOS) environment. The human body keeps both still standing and moving to show that the impact of the polarization to signal. This paper confirms the performance depending on the polarization of receiver antenna and the combination of the polarizations on the off-body channel.

A Study on the Non-Line-of-Sight Error Mitigation in Wireless Sensor Networks (무선 센서 네트워크 환경에서 Non-Line-of-Sight 오류 감소 방안에 관한 연구)

  • Kim, Woo-Jin;Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.873-875
    • /
    • 2008
  • In sensor network, the elimination of NLOS information is a necessity to improve the accuracy of the localization. For this reason, we proposed an algorithm iteratively eliminating the NLOS information to enhance the accuracy of the localization of a tag location, and simulated the proposed algorithm to confirm the performance. The proposed algorithm can estimate the location of the error distance within 3.5m when it has 10 LOS coordinates with LOS information. In addition, it can enhance the accuracy according to decreasing NLOS coordinates.

  • PDF

Deep Learning-based Indoor Positioning System Using CSI (채널 상태 정보를 이용한 딥 러닝 기반 실내 위치 확인 시스템)

  • Zhang, Zhongfeng;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2020
  • Over the past few years, Wi-Fi signal based indoor positioning system (IPS) has been researched extensively because of its low expenses of infrastructure deployment. There are two major aspects of location-related information contained in Wi-Fi signals. One is channel state information (CSI), and one is received signal strength indicator (RSSI). Compared to the RSSI, the CSI has been widely utilized because it is able to reveal fine-grained information related to locations. However, the conventional IPS that employs a single access point (AP) does not exhibit decent performance especially in the environment of non-line-of-sight (NLOS) situations due to the reliability degeneration of signals caused by multipath fading effect. In order to address this problem, in this paper, we propose a novel method that utilizes multiple APs instead of a single AP to enhance the robustness of the IPS. In our proposed method, a hybrid neural network is applied to the CSIs collected from multiple APs. By relying more on the fingerprint constructed by the CSI collected from an AP that is less affected by the NLOS, we find that the performance of the IPS is significantly improved.

Non-Contact Line-of-sight Detection using Color Contact Lens for Man-Machine Interface

  • Nishiuchi, Nobuyuki;Kurihara, Kenzo;Takada, Hajime
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.391-394
    • /
    • 1998
  • The man-machine interface Is an important factor in the computer system, and it is thought that line-of-sight (LOS) detection technology will allow significant advances in this field. Techniques for detecting LOS for use in human interfaces have been studied[1][2]. In earlier studies, however, LOS was detected with a head piece, goggles, or through fixing the position of the head. The limitations imposed by these fixed conditions render them unsuitable far use in interfaces, as they have adverse mental or physical effects on humans. Therefore. they have not been sufficiently developed for practical application. Research on non-contact LOS detection is expected to result in a usable LOS man-machine interface[3][4], and the current study is intended to be a step in that direction. The authors used color contact lenses for LOS detection, and applied this new method to a computer interface. The use of color contact lenses simplifies image processing. The algorithm used in this study is sufficiently accurate for practical applications. This technique can be used in input devices, in virtual reality applications, and in human engineering research.

  • PDF

An Algorithm for Optimal Selection of Communications for Smart Lighting in Heterogeneous Networks (이기종 통신 기반 스마트 조명을 위한 최적 통신 방식 선택 알고리즘)

  • Hong, Seung Gwan;Lee, Sun Yui;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • In this paper, we propose an algorithm for optimal selection of communications for smart lighting in heterogeneous networks. The smart lighting can be used for information communications and lighting simultaneously. To improve BER performance of smart lighting in heterogeneous networks, it adaptively selects a communication method among OCC, Wi-Fi, BLE based on distance between sensors and smart lightings, low power consumption for user requirements, operating time of smart lighting in Line-of-Sight(LOS)/Non-LOS channels. Thus, simulation results demonstrate effectiveness of the proposed algorithm contrary to baseline methods in LOS/NLOS channels.