• Title/Summary/Keyword: Non-harmonic load

Search Result 101, Processing Time 0.029 seconds

A Study on the Characteristic of Capacitor Current by Voltage Harmonics (전압 고조파에 의한 커패시터 전류 특성 해석)

  • Kim, Jong-Gyeum;Kim, Sung-Hyun;Kim, Il-Jung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.148-153
    • /
    • 2009
  • As the increasing of non-linear load, we have a growing interest in power quality. Power quality has come to the voltage quality. Voltage harmonics consist in at the PCC by the non-linear load. Capacitor is generally used for the power compensation and as the passive filter by the serial connection with reactor. Capacitor has low impedance as the frequency increases, so easily fall down by the harmonic component of non-linear load. Small voltage of low-order acts on quite a few at the capacitor by the current increase. In this paper, we measured the magnitude and angle of voltage at the PCC and calculated under the same condition. we checked out that lower voltage of higher order produces current magnification.

Analysis of Harmonic Effects due to Non-linear Load in Distribution Systems (비선형 부하의 고조파로 인한 배전계통의 영향 분석)

  • Lee, Ho-Rim;Kim, Hyoun-Su;Yeo, Sang-Min;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2225_2226
    • /
    • 2009
  • An increasing of non-linear loads such as power electronic equipment in distribution systems is the reason for the greater concern about harmonics in recent time. A harmonic current and voltage in distribution systems can cause many problems such as malfunction of protective equipment. In this paper, Total Harmonic Distortion(THD) of voltage according to magnitudes and measurement locations of the non-linear loads was calculated and analyzed with Electro-Magnetic Transients Program(EMTP).

  • PDF

Shunt Active Filter for Multi-Level Inverters Using DDSRF with State Delay Controller

  • Rajesh, C.R.;Umayal, S.P.
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.863-870
    • /
    • 2018
  • The traditional power control theories for the harmonic reduction methods in multilevel inverters are found to be unreliable under unbalanced load conditions. The unreliability in harmonic mitigation is caused by voltage fluctuations, non-linear loads, the use of power switches, etc. In general, the harmonics are reduced by filters. However, such devices are an expensive way to provide a smooth and fast response to secure power systems during dynamic conditions. Hence, the Decoupled Double Synchronous Reference Frame (DDSRF) theory combined with a State Delay Controller (SDC) is proposed to achieve a harmonic reduction in power systems. The DDSRF produces a sinusoidal harmonic that is the opposite of the load harmonic. Then, it injects this harmonic into power systems, which reduces the effect of harmonics. The SDC is used to reduce the delay between the compensation time for power injection and the generation of a reference signal. The proposed technique has been simulated using MATLAB and its reliability has been verified experimentally under unbalanced conditions.

Performance Analysis for Passive Filter Considering Allowable Limits of Tolerance (오차의 허용범위를 고려한 수동형 필터의 특성 해석)

  • Kim, Jong-Gyeum;Kim, Il-Jung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.38-43
    • /
    • 2009
  • Reactors are connected with capacitors to passive filter circuits for reducing harmonics caused by power conversion application. This passive filter frequently gets out of order by voltage and current stress. Especially filter reactor has too much voltage harmonics components, its trouble rate is higher than capacitor. In this paper, we analyzed voltage and current of reactor and capacitor used for passive filter by simulation and measurement. If reactor has a tolerance on variation of reactance value, series resonance frequency is different from originally filter design frequency and parallel resonance can be generated at the close point of the former. Because filter absorbs harmonic component of non-linear load, much of harmonic voltage has been impacted on reactor.

An Improved Control Approach for DSTATCOM with Distorted and Unbalanced AC Mains

  • Singh, Bhim;Solanki, Jitendra
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.131-140
    • /
    • 2008
  • This paper presents a new control approach of DSTATCOM (distribution static compensator) for compensation of reactive power, unbalanced loading and harmonic currents under unbalanced non-sinusoidal ac mains. The control of DSTATCOM is achieved using Adaline based current estimator based on LMS algorithm to maintain source currents real and undistorted. The dc bus voltage of voltage source converter (VSC) working as DSTATCOM is maintained at constant voltage using a proportional-integral (PI) controller. The DSTATCOM system alongwith proposed control scheme is modeled in MATLAB to simulate the behavior of the system. The practical implementation of the DSTATCOM is carried out using dSPACE DS1104 R&D controller having TMS320F240 as a slave DSP. Simulated and implementation results are presented to demonstrate the effectiveness of the DSTATCOM with Adaline based control to meet the severe load perturbations with different types of loads (linear and non-linear) under distorted and unbalanced AC mains.

Safely Improving Method to Zero-Harmonics Current with 4-Pole Low Voltage Circuit Breaker Equipped N-phase Trip Device (4극 저압차단기 N상 Trip장치를 사용한 영상고조파 안전성 개선방안)

  • Ki, Che-Ouk;Kim, Ju-Chul;Choi, Chang-Kyu
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.458-461
    • /
    • 2009
  • In 3-phase 4 wire system, appearance of the $3^{rd}$ harmonic current by increasing non-liner load is the one of causes overheating neutral wire of power line, and apparatus. So it is necessary to protect power-factor decreasing by the $3^{rd}$ harmonic, and electric power apparatus, and line safely, in this study, power system accidents caused by the $3^{rd}$ harmonic were investigated, then harmonic components analysis and unbalanced load analysis got accomplished. As result, we proposed the method to protect the power line and apparatus from over-current of neutral line by using the most economic 4-pole low voltage circuit breaker.

  • PDF

A Study on the Current & Load Unbalance Factor in using Linear & Nonlinear Load (선형 및 비선형 부하 사용시 전류 및 부하불평형률에 대한 연구)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1291-1296
    • /
    • 2017
  • Single-phase and three-phase load can be used together in 3-phase 4-wire system. Single-phase and three-phase loads can be classified as linear loads without harmonics and nonlinear with harmonics. Single-phase linear loads are linear loads such as lamps and heat, and single-phase nonlinear loads are power converters such as rectifiers. It is recommended that the distribution of loads in the 3-phase, 4-wire distribution lines be evenly distributed within a certain range. However, harmonic currents generated in a nonlinear load flow on the neutral line and affect the phase current magnitude. The difference in the magnitude of the individual phase current due to the influence of the harmonic current present in the neutral line can produce a difference in current and load unbalance. In this study, current unbalance ratio and load unbalance ratio which can occur when a combination of linear and nonlinear loads are applied to 3-phase 4-wire distribution line are calculated.

Comparative Analysis of Voltage Unbalance Factor on the use of Linear and Non-linear loads in Three-phase Four-wire Low Voltage Distribution Line (3상 4선식 저압 배전선로에서 선형 및 비선형 부하의 사용시 전압 불평형률 비교 분석)

  • Kim, Jong-Gyeum;Kim, Ji-Myeong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.587-592
    • /
    • 2017
  • In the three-phase four-wire low-voltage power distribution equipment, single-phase and three-phase load have been used mainly mixed. Also linear and nonlinear loads have been used together in the same conditions. In a three-phase four-wire distribution line, the current distribution of three-phase linear load is almost constant in each phase during driving or stopping, but the single-phase load is different from each other for each phase in accordance with the operation and stop. So that the voltage unbalance is caused by the current difference of each phase. In the three-phase four-wire distribution system, non-linear load is used with linear load. The presence of single-phase nonlinear loads can produce an increase in harmonic currents in three-phase and neutral line. It can also cause voltage unbalance. In the present study, we analyzed for the voltage unbalance fluctuations by the operation pattern of the single and three-phase linear and non-linear load in three-phase four-wire low voltage distribution system.

Characteristics Analysis of Induction Motor by Operation of Non- linear Loads under the 3-phase 4-wire grid system (3상 4선식에서 비선형 부하의 운전시 유도전동기의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Wong
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.43-48
    • /
    • 2006
  • This paper presents a scheme on the characteristics of induction motor under the combination of linear & non-linear loads at the three phase 4-wire power distribution system. Under the combination operation of single & three phase load, voltage unbalance will be generated and current unbalance will be more severe by the dropped voltage quality. All power electronic converters used in different types of electronic systems can increase harmonic disturbances by injecting harmonic currents directly into the feeder grid of three phase 4-wire. Harmonic current may cause torque to decrease. Moors may also overheat or become noisy and torque oscillation in the rotor can lead to mechanical resonance and vibration.

  • PDF

Harmonic Modeling for Power Systems (전력시스템 고조파 모델링에 관한 연구)

  • Wang, Y.P.;Chong, H.H.;Han, H.H.;Kwak, N.H.;Jeon, Y.S.;Park, S.H.;Kim, K.C.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.147-148
    • /
    • 2006
  • Recently, due to increasing the application of power electronic equipment, harmonics generated from the non-liner load are fairly produced. Harmonics can cause a variety of problems such as the overheating of distribution transformer, the breakdown of device and communication interference. Interest about power quality decline of power system is very increased. In this paper, we are measured the harmonic voltage and current o( power system to analyze harmonic characteristics, and it is analyzed Total Harmonic Distortion(THD). Also, we Ere modeled power system using PSCAD/EMTDC. And it is analyzed harmonic voltage and current in steady-state. The study results have been indicated the utility about harmonics analysis and modelling for power system.

  • PDF