• Title/Summary/Keyword: Non-ferromagnetic Pipe

Search Result 15, Processing Time 0.029 seconds

The generation of torsional waves and the pipe diagnosis using magnetostrictive transducers (자왜 트랜스듀서를 이용한 유도 비틀림파의 발생 및 배관의 이상진단)

  • 박찬일;한순우;조승현;김윤영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.544-548
    • /
    • 2003
  • The objective of this investigation is to develop an efficient method to generate and measure torsional waves in non-ferromagnetic waveguides by using magnetostrictive transducers. In existing methods using a nickel strip that is attached circumferentially to the test specimen such as aluminum pipes, large current input to the magnetostrictive transducer often generates undesired wave modes in addition to desired torsional wave. However, we propose an improved method to generate the torsional waves without being accompanied by other undesirable wave modes regardless of the input current magnitude. The specific transducer configuration and its performance will be presented in the present investigation.

  • PDF

The Magnetic Finishing Characteristics of Pipe Inside Polished by Slurry Circulation System (슬러리 순환방식을 이용한 파이프 내면의 자기연마특성)

  • Park, Won-Kyou;Choi, Hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.1
    • /
    • pp.38-44
    • /
    • 2004
  • An internal finishing process by the application of magnetic abrasive machining has been developed as a new technology to obtain a fine inner surface of non-ferromagnetic pipe. In this paper, an abrasive slurry circulation system was designed and manufactured. As a result, it was found that a fine inner surface of pipe was available by the use of these machining methods. The basic machining characteristics of pin-type magnetic tools were analyzed experimentally. In addition, the experimental results show that pin-type magnetic tools have more machining efficiency than Iron particles as magnetic tools.

  • PDF

Vibration Measurement of an Automobile Exhaust System in Operation (구동중인 자동차 배기계의 진동 특성 측정)

  • Kim, Sung-Kook;Lee, Jong-Nam;Han, Soon-Woo;Chung, Tae-Jin;Lee, Sin-Young;Jang, Gang-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.235-240
    • /
    • 2007
  • In this work, the operational deflection shape(ODS) of an automobile exhaust system is measured by using a recently-developed magnetic sensor. The magnetic sensor is composed of a solenoid and two pairs of permanent magnets generating an antisymmetric magnetic field in the lateral direction inside the solenoid. Lateral movement of a ferromagnetic pipe inside the magnetic field of the suggested sensor induces an electromotive force in the solenoid corresponding to the lateral velocity of the pipe. Due to the simplicity and non-contact characteristics of the magnetic sensor, dynamic behaviors of the structures operating under high temperature such as an exhaust pipe can be efficiently observed. It is shown that the lateral ODS of an exhaust system can be successfully measured by the suggested sensors.

The Internal Finishing Characteristics of Pipe Polished by Slurry Circulation Magnetic Abrasive Machining (슬러리순환 자기연마법에 의한 파이프 내면의 연마특성)

  • Rho, T.W.;Park, W.K.;You, W.S.;Seo, Y.I.;Choi, H.;Lee, J.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.198-201
    • /
    • 2002
  • An internal finishing process by the application of magnetic abrasive machining has been developed as a new technology to obtain a fine inner surface of pipe. In this paper, a slurry circulation system was designed and manufactured. Its finishing characteristics was experimently investigated by various effective factors such as dry, water flow, oil flow with a slurry. From the experimental results, it was found that the materal removal and surface roughness were good in oil flow with slurry. The slurry circulation system is effective on the internal finishing of non-ferromagnetic pipe(SUS304).

  • PDF

Reinforcing Effects around Face of Soil-Tunnel by Crown & Face-Reinforcing - Large Scale Model Testing (천단 및 막장면 수평보강에 의한 토사터널 보강효과 - 실대형실험)

  • Kwon Oh-Yeob;Choi Yong-Ki;Woo Sang-Baik;Shin Jong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.6
    • /
    • pp.71-82
    • /
    • 2006
  • One of the most popular pre-reinforcement methods of tunnel heading in cohesionless soils would be the fore-polling of grouted pipes, known as RPUM (reinforced protective umbrella method) or UAM (umbrella arch method). This technique allows safe excavation even in poor ground conditions by creating longitudinal arch parallel to the tunnel axis as the tunnel advances. Some previous studies on the reinforcing effects have been performed using numerical methods and/or laboratory-based small scale model tests. The complexity of boundary conditions imposes difficulties in representing the tunnelling procedure in laboratory tests and theoretical approaches. Full-scale study to identify reinforcing effects of the tunnel heading has rarely been carried out so far. In this study, a large scale model testing for a tunnel in granular soils was performed. Reinforcing patterns considered are four cases, Non-Reinforced, Crown-Reinforced, Crown & Face-Reinforced, and Face-Reinforced. The behavior of ground and pipes as reinforcing member were fully measured as the surcharge pressure applied. The influences of reinforcing pattern, pipe length, and face reinforcement were investigated in terms of stress and displacement. It is revealed that only the Face-Reinforced has decreased sufficiently both vertical settlement in tunnel heading and horizontal displacement on the face. Vertical stresses along the tunnel axis were concentrated in tunnel heading from the test results, so the heading should be reinforced before tunnel advancing. Most of maximum axial forces and bending moments for Crown-reinforced were measured at 0.75D from the face. Also it should be recommended that the minimum length of the pipe is more than l.0D for crown reinforcement.