• 제목/요약/키워드: Non-ferromagnetic Pipe

검색결과 15건 처리시간 0.024초

비자성 배관의 비접촉 굽힘 진동 측정을 위한 자기 센서의 개발 (A new magnetic sensor for the non-contact measurement of bending vibrations of non-ferromagnetic pipes)

  • 한순우;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1154-1158
    • /
    • 2006
  • This investigation suggests a new non-contact type sensor that can measure flexural vibrations of a non-ferromagnetic pipe. The sensor works on the reversed Lorentz force mechanism; however, anti-symmetric bias magnetic field suggested in this work should be applied to measure bending vibration of a non-ferromagnetic pipe. The importance of the suggested magnetic field is verified by a series of experiments. The sensor is applied to the bending vibration measurement and modal testing of an aluminum pipe and shows satisfactory working performance compared to others.

  • PDF

비자성 파이프 내면기 자기연마특성에 관한 연구 (The Magnetic Finishing Characteristics of Non-ferromagnetic Pipe Inside Polished)

  • 박원규;노태우;최환
    • 한국공작기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.74-80
    • /
    • 2004
  • An internal finishing process by the application of magnetic abrasive machining has been developed as a new technology to obtain a fine inner surface of pipe. In this paper, the finishing process of a non-ferromagnetic pipe by a static magnetic field method is introduced and its finishing characteristics is discussed with effective factors by various experiments. From these experimental results, it is found that the magnetic abrasives inserted in the pipe are arranged according to the magnetic force line. Through the experimental, it is possible to estimate the proper supply volume of the abrasive, which in proportional to the diameter of pipe.

자기연마법에 의한 비자성 파이프 내면의 연마특성 (I) (The Internal Finishing Characteristics of Non-ferromagnetic Pipe Polished by Magnetic Abrasive Machining(I))

  • 박원규;노태우;서영일;최환;이종찬;정선환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.779-782
    • /
    • 2000
  • An internal finishing process by the application of magnetic abrasive machining has been developed as a new technology to obtain a fine inner surface of pipe. In this paper, the finishing process of a non-ferromagnetic pipe by a static magnetic field method is introduced and its finishing characteristics is discussed with effective factors by various experiments. From these experimental results, it is found that the proper suppling quantity of magnetic abrasives per diameter of pipe is important, and the inner surface roughness of pipe is not changed much after certain critical finishing time. As a result of this investigation the 3.2$\mu$m Rmax in inner surface roughness of stainless steel pipe is improved to 0.7$\mu$m Rmax after 6 minutes finishing.

  • PDF

자기연마법에 의한 비자성 파이프 내면의 연마특성(II) (The Interal Finishing Characteristics of Non-ferromagnetic Pipe Polished by Magnetic Abrasive Machining(II))

  • 박원규;노태우;서영일;최환;이종찬;정선환;채석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.960-963
    • /
    • 2001
  • An internal finishing process by the application of magnetic abrasive machining has been developed as a new technology to obtain a fine inner surface of pipe. In this paper, another method of magnetic abrasive machining in which the N and S magnetic poles are vibrated and a workpiece is rotated only is tried in a non-ferromagnetic pipe(SUS304), and its finishing characteristics is experimental results, it is found that the vibration effects of magnetic poles on the finishing characteristics are large in internal finishing.

  • PDF

강자성 배관의 원격장 와전류 결함 신호 검출에 GMR Sensor의 적용성 연구 (GMR Sensor Applicability to Remote Field Eddy Current Defect Signal Detection in a Ferromagnetic Pipe)

  • 박정원;박재하;송성진;김학준;권세곤
    • 비파괴검사학회지
    • /
    • 제36권6호
    • /
    • pp.483-489
    • /
    • 2016
  • 강자성 배관의 대표적인 비파괴검사 방법으로 접촉방식인 초음파탐상(UT)과 비접촉식 검사인 누설자속탐상(MFL), 전자기초음파탐상(EMAT), 원격장 와전류탐상(RFECT) 기법 등이 있다. 특히 원격장 와전류(RFECT) 기법은 배관의 직경보다 작은 시스템 구축 등의 장점이 있다. 이런 장점에도 불구하고 array system을 구성할 경우 coil sensor 각각의 민감도 차이와 유지 보수 등의 문제가 있다. 이런 문제점을 해결하기 위해 크기가 작고 교체성이 우수하며 같은 민감도를 갖는 GMR sensor(giant magneto-resistance)를 적용하였다. 본 연구는 강자성 배관에 GMR sensor의 축 및 반경 방향의 원격장 및 깊이 변화를 가진 표준결함 실험을 통해 원격장 및 결함신호 특성을 확인하였고 강자성 배관에 원격장 와전류를 이용한 GMR sensor의 적용 가능성을 확인하였다.

자기연마법에서 자극 진동 효과 (The Effect of Vibratory Magnetic Pole by Magnetic Abrasive Finishing)

  • 박원규;노태우;최환
    • 한국기계가공학회지
    • /
    • 제4권1호
    • /
    • pp.7-12
    • /
    • 2005
  • An internal finishing process by the application of magnetic abrasive finishing has been developed as a new technology to obtain a fine inner surface of pipe. In this paper, another method of magnetic abrasive machining in which the N and S magnetic poles are vibrated and a workpiece is rotated only is tried in a non-ferromagnetic pipe(SUS304), and its finishing characteristics is experimently investigated by various effective factors such as vibrating frequency and amplitude. From the experimental results, it is found that the vibration effects of magnetic poles on the finishing characteristics are large in internal finishing.

  • PDF

자기연마법에 의한 비자성 파이브 내면의 연마특성(III) (The Internal Finishing Characteristics of Non-ferromagnetic Pipe Polished by Magnetic Abrasive Machining(III))

  • 박원규;노태우;서영일;최환;이종찬;정선환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.915-918
    • /
    • 1997
  • An internal finishing process by the application of magnetic abrasive machining has been developed as a new technology to obtain a fine inner surface of pipe. In this paper, an abrasive circulation system was designed and manufactured. As a result, it was found that a fine inner surface abrasive of pipe was available by the use of this machining methods. The basic machining characteristics of pin-type magnetic tools were analyzed experimentally. In addition, the experimental results show that we can realize that pin-type magnetic tools have more machining efficiency than iron particles as magnetic tools.

  • PDF

자기 변형 패치를 이용한 비자성 배관의 비접촉 종진동 모달 테스팅 (Non-contact Longitudinal Modal Testing of a Non-ferromagnetic Pipe Using Magnetostrictive Patches)

  • 박찬일;한순우;김윤영
    • 한국소음진동공학회논문집
    • /
    • 제18권3호
    • /
    • pp.293-298
    • /
    • 2008
  • Non-contact modal testing for longitudinal modes of a pipe is discussed in this work. The suggested method can generate and measure longitudinal vibrations without mechanical contact by using the coupling phenomenon between deformation and magnetic field, known as the magnetostrictive effect. This effect has been used to generate and measure ultrasonic waves, but seldom used to deal with audible vibrations. In this investigation, the validity of the developed method in a typical vibration frequency range is checked with an Inconel pipe being used in nuclear power plants.

자기 변형 패치를 이용한 비자성 배관의 비접촉 종진동 모달 테스팅 (Non-contact Longitudinal Modal Testing of a Non-ferromagnetic Pipe Using Magnetostrictive Patches)

  • 박찬일;한순우;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1343-1347
    • /
    • 2006
  • Non-contact modal testing for longitudinal modes of a pipe is discussed in this work. The suggested method can generate and measure longitudinal vibrations without mechanical contact by using the coupling phenomenon between deformation and magnetic field, known as the magnetostrictive effect. This effect has been used to generate and measure ultrasonic waves, but seldom used to deal with audible vibrations. In this investigation, the validity of the developed method in a typical vibration frequency range is checked with an inconel pipe being used in nuclear power plants.

  • PDF

자기변형 트랜스듀서를 이용한 유도 비틀림파의 발생 및 배관의 이상진단 (The Generation of Torsional Waves and the Pipe Diagnosis Using Magnetostrictive Transducers)

  • 김윤영;박찬일;한순우;조승현
    • 한국소음진동공학회논문집
    • /
    • 제14권2호
    • /
    • pp.144-149
    • /
    • 2004
  • The objective of this investigation is to develop an efficient method to generate and measure torsional waves in non-ferromagnetic waveguides by using magnetostrictive transducers. In existing methods using a nickel strip that is attached circumferentially to the test specimen, large current input to the magnetostrictive transducer often generates undesired wave modes in addition to the desired torsional wave. However, we propose a new method to generate the torsional waves without being accompanied with other undesirable wane modes regardless of the input current magnitude. The specific transducer configuration is suggested and its performance is also checked through a series of experiments.