• Title/Summary/Keyword: Non-explosive

Search Result 140, Processing Time 0.025 seconds

Development of a generalized scaling law for underwater explosions using a numerical and experimental parametric study

  • Kim, Yongtae;Lee, Seunggyu;Kim, Jongchul;Ryu, Seunghwa
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.305-314
    • /
    • 2021
  • In order to reduce enormous cost of real-scale underwater explosion experiments on ships, the mechanical response of the ships have been analyzed by combining scaled-down experiments and Hopkinson's scaling law. However, the Hopkinson's scaling law is applicable only if all variables vary in an identical ratio; for example, thickness of ship, size of explosive, and distance between the explosive and the ship should vary with same ratio. Unfortunately, it is infeasible to meet such uniform scaling requirement because of environmental conditions and limitations in manufacturing scaled model systems. For the facile application of the scaling analysis, we propose a generalized scaling law that is applicable for non-uniform scaling cases in which different parts of the experiments are scaled in different ratios compared to the real-scale experiments. In order to establish such a generalized scaling law, we conducted a parametric study based on numerical simulations, and validated it with experiments and simulations. This study confirms that the initial peak value of response variables in a real-scale experiment can be predicted even when we perform a scaled experiment composed of different scaling ratios for each experimental variable.

The Influences of Additives and Curing Temperature on the Expansion Pressure of Calcium Oxide Hydration (생석회의 팽창압 발현에 미치는 첨가제 및 양생온도의 영향)

  • Kim, Won-Ki;Soh, Jeong-Soeb;Kim, Hoon-Sang;Kim, Hong-Joo;Lee, Won-Jun;Shin, Jin-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.9
    • /
    • pp.529-535
    • /
    • 2007
  • Calcium oxide has been used as a demolition agent in fracturing rocks and old concrete structures, etc. With the agent, demolition work can be done in safety without a noise, vibration and any other pollution, since high expansive pressure is obtained gradually by only mixing the agents with water and pouring the slurry into boreholes. But application of the non-explosive demolition agent is a time-consuming job, especially in winter. Essentially, this problem is related to the reaction rate of calcium oxide with water. This study examines the influence of additives such as cement and anhydrite on expansion pressure of calcium oxide at different curing temperatures. The expansion pressure of calcium oxide began to increase steadily with the rise of the curing temperature. When mixing calcium oxide alone with water, blown-out shot occurred. But as additives were added to calcium oxide, the reaction of calcium oxide delayed and the expansion pressure showed gradual increment. Especially, anhydrite showed a superior delaying effect than cement on the reaction of calcium oxide.

Non-linear Dynamic Analysis of Reinforced Concrete Slabs Subjected to Explosive Loading Using an Orthotropic Concrete Constitutive Model (이등방성 콘크리트 모델을 이용한 폭발하중을 받는 철근콘크리트 슬래브의 비선형 동적해석)

  • Lee, MinJoo;Kwak, Hyo-Gyoung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.409-416
    • /
    • 2019
  • An improved numerical model for non-linear analysis of reinforced concrete (RC) slabs subjected to blast loading is proposed. This approach considers a strain rate dependent orthotropic constitutive model that directly determines the stress state using the stress-strain relation acquired from the data obtained using the biaxial strength envelope. Moreover, the bond-slip between concrete and reinforcing steel is gradually enlarged after the occurrence of cracks and is concentrated in the plastic hinge region. The bond-slip model is introduced to consider the crack direction of the concrete under a biaxial stress state. Correlation studies between the numerical analysis and the experimental results were performed to evaluate the analytical model. The results show that the proposed model can effectively be used in dynamic analyses of reinforced concrete slab members subjected to explosive loading. Moreover, it was determined that it is important to consider biaxial behavior in the material model and the bond-slip effect.

Separation Device of Deployable SAR Antenna for satellite (위성용 전개형 SAR 안테나 구속분리장치 )

  • Junwoo, Choi;Bohyun, Hwang;Byungkyu, Kim;Dong-yeon, Kim;Hyun-guk, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.123-128
    • /
    • 2022
  • This paper proposes a non-explosive separation device for the deployable SAR antenna. This device utilises a Ni-Cr wire to restrain the antenna's belt mechanism, and joule-heating is used to minimise the impact of deployment. After the Ni-Cr wire has been cut, the device is deployed through the preload of the belt mechanism. Considering the design load(99g) and preload conditions, FEM analysis for AL7050 and Ti was performed. This analysis revealed that the amount of deformation for AL7050 was 0.256 mm with a margin of +0.09. In addition, by performing orbital thermal analysis, the temperature distribution for AL7050 in the worst cold case is confirmed as -50 to +2℃ and -10 to +90℃ in the worst hot case. This analysis confirmed that the separation device would remain stable even in the worst environment.

A new SDOF method of one-way reinforced concrete slab under non-uniform blast loading

  • Wang, Wei;Zhang, Duo;Lu, Fangyun;Liu, Ruichao
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.595-613
    • /
    • 2013
  • A new effective model for calculation of the equivalent uniform blast load for non-uniform blast load such as close-in explosion of a one-way square and rectangle reinforced concrete slab is proposed in this paper. The model is then validated using single degree of freedom (SDOF) system with the experiments and blast tests for square slabs and rectangle slabs. Test results showed that the model is accurate in predicting the damage level on the tested RC slabs under the given explosive charge weight and stand-off distance especially for close-in blast load. The results are also compared with those obtained by conventional SDOF analysis and finite element (FE) analysis using solid elements. It is shown that the new model is more accurate than the conventional SDOF analysis and is running faster than the FE analysis.

Development of 154kV Gas Insulated Transformer (154kV급 가스절연 변압기 개발)

  • Woo J.H.;Choi Y.L.;Kim K.M.;Lee J.Y.;Seok B.Y.
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.12
    • /
    • pp.532-539
    • /
    • 2005
  • The demand of Gas Insulated Transformer(GIT) using $SF_6$ gas as insulating and cooling medium is being increased dramatically in the underground substation of urban area because it has the advantages of non-flammable and non-explosive, etc. This paper describes the structural features and advantages of the gas insulated transformer compare to an oil immersed transformer, and presents a brief overview of the consideration and technology which apply to $SF_6$ gas insulated transformer.

Optimization of Analytical Conditions for the Quantification of Explosive Compounds in Soil using HPLC (HPLC에 의한 토양내 화약물질 정량분석조건 최적화)

  • Cho, Jung-Hyun;Bae, Bum-Han;Kim, Kye-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.51-60
    • /
    • 2009
  • A series of experiments was performed to develop an optimized analytical procedure for the analysis of explosives in soil by HPLC with soil samples collected at two live-fire military shooting ranges. The minimum amount of soil to be collected, Wmin, for the analysis of explosive compounds was 125g, based on the segregation and homogeneity constants that account for soil heterogeneity and non-homogeneous distribution of target explosive compounds. The optimization of extraction and HPLC analytical conditions were also studied based on analytes CV values. The most effective soil/ extractant ratio was estimated to be 10g-pretreated soil/20 mL acetonitrile as extractant. The optimized HPLC elution conditions for the separation of US EPA designated 14 explosive compounds, were column temperature 30${\circ}C$, eluents ratio of isopropanol: acetonitrile: water = 18 : 12: 70, and flow rate of 0.8 mUmin at 230 nm. However, UV wavelength 254 nm was better for the analysis of NB, 2,4-DNT, 2NT, 4NT, and 3NT.

Non-contact monitoring of 3-dimensional vibrations of bodies using a neural network

  • Ha, Sung Chul;Cho, Gyeong Rae;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1011-1016
    • /
    • 2015
  • Gas piping systems in power plants and factories are always influenced by the mechanical vibrations of rotational machines such as pumps, blowers, and compressors. Unusual vibrations in a gas piping system influence possible leakages of liquids or gases, which can lead to large explosive accidents. Real-time measurements of unusual vibrations in piping systems in situ prohibit them from being possible leakages owing to the repeated fatigue of vibrations. In this paper, a non-contact 3-dimensional measurement system that can detect the vibrations of a solid body and monitor its vibrational modes is introduced. To detect the displacements of a body, a stereoscopic camera system is used, through which the major vibration types of solid bodies (such as X-axis-major, Y-axis-major, and Z-axis-major vibrations) can be monitored. In order to judge the vibration types, an artificial neural network is used. The measurement system consists of a host computer, stereoscopic camera system (two-camera system, high-speed high-resolution camera), and a measurement target. Through practical application on a flat plate, the measured data from the non-contact measurement system showed good agreement with those from the original vibration mode produced by an accelerator.

The Invention of Non-Release bolt by controlling expansion rate of bolt body (볼트 몸체 팽창률 제어를 통한 풀림방지볼트 개발)

  • Kim, Dong-Jin;Lee, Yeung-Jo;Lee, Jung-Bok;Kim, Young-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.523-526
    • /
    • 2010
  • In this study, we demonstrated a development of a non-releasing bolt which is fastened with a target by expanding a certain area of a bolt body. Being released a bolt causes many problems in a field where bolts are used. In order to figure out the problems, currently, many types of a non-releasing bolt have been developed and have been using. Unfortunately, however, they do not perfectly function not to be released. Therefore, the structures builded with bolts have many problems caused by external stress such as vibration and shock, and thus the bolts have to be regularly tightened for maintenance. With the important factors of internal geometry, the amount of explosive, and the firing pin, we developed a technology which could control the expansion degree of a certain area on a bolt body. Based on the results, it was founded that the performance of non-releasing was linearly proportional to the degree of body expansion.

  • PDF

MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease

  • Ha, Tai-You
    • IMMUNE NETWORK
    • /
    • v.11 no.3
    • /
    • pp.135-154
    • /
    • 2011
  • The great discovery of microRNAs (miRNAs) has revolutionized current cell biology and medical science. miRNAs are small conserved non-coding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3' untranslated region of specific messenger RNAs for degradation or translational repression. New members of the miRNA family are being discovered on a daily basis and emerging evidence has demonstrated that miRNAs play a major role in a wide range of developmental process including cell proliferation, cell cycle, cell differentiation, metabolism, apoptosis, developmental timing, neuronal cell fate, neuronal gene expression, brain morphogenesis, muscle differentiation and stem cell division. Moreover, a large number of studies have reported links between alterations of miRNA homeostasis and pathological conditions such as cancer, psychiatric and neurological diseases, cardiovascular disease, and autoimmune disease. Interestingly, in addition, miRNA deficiencies or excesses have been correlated with a number of clinically important diseases ranging from cancer to myocardial infarction. miRNAs can repress the gene translation of hundreds of their targets and are therefore well-positioned to target a multitude of cellular mechanisms. As a consequence of extensive participation in normal functions, it is quite logical to ask the question if abnormalities in miRNAs should have importance in human diseases. Great discoveries and rapid progress in the past few years on miRNAs provide the hope that miRNAs will in the near future have a great potential in the diagnosis and treatment of many diseases. Currently, an explosive literature has focussed on the role of miRNA in human cancer and cardiovascular disease. In this review, I briefly summarize the explosive current studies about involvement of miRNA in various human cancers and cardiovascular disease.