• Title/Summary/Keyword: Non-destructive sorting

Search Result 14, Processing Time 0.021 seconds

Study on non-destructive sorting technique for lettuce(Lactuca sativa L) seed using fourier transform near-Infrared spectrometer (FT-NIR을 이용한 상추(Lactuca sativa L) 종자의 비파괴 선별 기술에 관한 연구)

  • Ahn, Chi-Kook;Cho, Byoung-Kwan;Kang, Jum-Soon;Lee, Kang-Jin
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.111-116
    • /
    • 2012
  • Nondestructive evaluation of seed viability is one of the highly demanding technologies for seed production industry. Conventional seed sorting technologies, such as tetrazolium and standard germination test are destructive, time consuming, and labor intensive methods. Near infrared spectroscopy technique has shown good potential for nondestructive quality measurements for food and agricultural products. In this study, FT-NIR spectroscopy was used to classify normal and artificially aged lettuce seeds. The spectra with the range of 1100~2500 nm were scanned for lettuce seeds and analyzed using the principal component analysis(PCA) method. To classify viable seeds from nonviable seeds, a calibration modeling set was developed with a partial least square(PLS) method. The calibration model developed from PLS resulted in 98% classification accuracy with the Savitzky-Golay $1^{st}$ derivative preprocessing method. The prediction accuracy for the test data set was 93% with the MSC(Multiplicative Scatter Correction) preprocessing method. The results show that FT-NIR has good potential for discriminating non-viable lettuce seeds from viable ones.

Non-Destructive Sorting Techniques for Viable Pepper (Capsicum annuum L.) Seeds Using Fourier Transform Near-Infrared and Raman Spectroscopy

  • Seo, Young-Wook;Ahn, Chi Kook;Lee, Hoonsoo;Park, Eunsoo;Mo, Changyeun;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.41 no.1
    • /
    • pp.51-59
    • /
    • 2016
  • Purpose: This study examined the performance of two spectroscopy methods and multivariate classification methods to discriminate viable pepper seeds from their non-viable counterparts. Methods: A classification model for viable seeds was developed using partial least square discrimination analysis (PLS-DA) with Fourier transform near-infrared (FT-NIR) and Raman spectroscopic data in the range of $9080-4150cm^{-1}$ (1400-2400 nm) and $1800-970cm^{-1}$, respectively. The datasets were divided into 70% to calibration and 30% to validation. To reduce noise from the spectra and compare the classification results, preprocessing methods, such as mean, maximum, and range normalization, multivariate scattering correction, standard normal variate, and $1^{st}$ and $2^{nd}$ derivatives with the Savitzky-Golay algorithm were used. Results: The classification accuracies for calibration using FT-NIR and Raman spectroscopy were both 99% with first derivative, whereas the validation accuracies were 90.5% with both multivariate scattering correction and standard normal variate, and 96.4% with the raw data (non-preprocessed data). Conclusions: These results indicate that FT-NIR and Raman spectroscopy are valuable tools for a feasible classification and evaluation of viable pepper seeds by providing useful information based on PLS-DA and the threshold value.

Quality Prediction of Kiwifruit Based on Near Infrared Spectroscopy

  • Lee, Jin Su;Kim, Seong-Cheol;Seong, Ki Cheol;Kim, Chun-Hwan;Um, Yeong Cheol;Lee, Seung-Koo
    • Horticultural Science & Technology
    • /
    • v.30 no.6
    • /
    • pp.709-717
    • /
    • 2012
  • To establish the standard of ripe kiwifruit sorting, near infrared (NIR) spectroscopy was performed on kiwifruit sampled from three farms. Destructive measurements of flesh firmness, soluble solids content (SSC), and acidity were performed and compared to measurement using NIR reflectance spectrums from 408 to 2,492 nm. NIR predictions of those quality factors were calculated using the modified partial least square regression method. Flesh firmness was predicted with a standard error of prediction (SEP) of 3.32 N and with a correlation coefficient ($R^2$) of 0.88. SSC was predicted with SEP of $0.49^{\circ}Brix$ and with $R^2$ of 0.98. Acidity was predicted with SEP of 0.28% and with $R^2$ of 0.91. Kiwifruit ripened at $20^{\circ}C$ for 15 days showed uneven qualities with normal distribution. Considering the SEP of each parameter, kiwifruit after ripening treatment could be non-destructively predicted their qualities and sorted by flesh firmness or soluble solids content through NIR prediction.

Development of non-destructive measurement method for discriminating disease-infected seed potato using visible/near-Infrared reflectance technique (광 반사방식을 이용한 감염 씨감자 비파괴 선별 기술 개발)

  • Kim, Dae-Yong;Cho, Byoung-Kwan;Lee, Youn-Su
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.1
    • /
    • pp.117-123
    • /
    • 2012
  • Pathogenic fungi and bacteria such as Pectobacterium atrosepticum, Clavibacter michiganensis subsp. sepedonicus, Verticillium albo-atrum, and Rhizoctonia solani were the major microorganism which causes diseases in seed potato during postharvest process. Current detection method for disease-infected seed potato relies on human inspection, which is subjective, inaccurate and labor-intensive method. In this study, a reflectance spectroscopy was used to classify sound and disease-infected seed potatoes with the spectral range from 400 to 1100 nm. Partial least square discriminant analysis (PLS-DA) with various preprocessing methods was used to investigate the feasibility of classification between sound and disease-infected seed potatoes. The classification accuracy was above 97 % for discriminating disease seed potatoes from sound ones. The results show that Vis/NIR reflectance method has good potential for non-destructive sorting for disease-infected seed potatoes.

APPLICATION OF A MULTI-WAVELENGTH NIR DIODE LASER ARRAY FOR NON-DESTRUCTIVE FOOD ANALYSIS

  • Tauscher, Bernhard;Butz, Peter;Lindauer, Ralf
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3123-3123
    • /
    • 2001
  • Near infrared (NIR) spectroscopy has become a widely used method in food and beverage analysis because of its speed, accuracy and the simplicity of sample preparation. One of the basic requirements of NIR instruments is a wide dynamic range if weak, or small, absorption changes or concentrations are to be measured. Thus the instrument must be sufficiently luminous, and efficient, to enable measurements to be made in a reasonably short time, as for some applications (e.g. sorting) short response times are essential. Diode lasers function the same way as lasers but linewidths are not as narrow as typical lasers. In this work an array of seven laser diodes (in the range of 750-1100 nm) with energy outputs of around hundred milliwatts each were combined with a fast diode array spectrometer (400-1100 nm, 1024 pixels, integration time from 3 ms) as detector. Measurements in transmission mode were performed in solutions of sugars in aqueous solutions and in deuteriumoxide. The feasibility of non-destructive measurements in transmission mode was investigated for different fruits and vegetables.

  • PDF

Discrimination of Internally Browned Apples Utilizing Near-Infrared Non-Destructive Fruit Sorting System (근적외선 비파괴 과일 선별 시스템을 활용한 내부 갈변 사과의 판별)

  • Kim, Bal Geum;Lim, Jong Guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.208-213
    • /
    • 2021
  • There is a lack of studies comparing the internal quality of fruit with its external quality. However, issues of internal quality of fruit such as internal browning are important. We propose a method of classifying normal apples and internally browned apples using a near-infrared (NIR) non-destructive system. Specifically, we found the optimal wavelength and characteristics of the spectra for determining the internal browning of Fuji apples. The NIR spectra of apples were obtained in the wavelength range of 470-1150 nm. A group of normal apples and a group of internally browned apples were identified using principal component analysis (PCA), and a partial least squares regression (PLSR) analysis was performed to develop and evaluate the discriminant model. The PCA analysis revealed a clear difference between the normal and internally browned apples. From the PLSR, the correlation coefficient of the predictive model without pretreatment was determined to be 0.902 with an RMSE value of 0.157. The correlation coefficient of the predictive model with pretreatment was 0.906 with an RMSE value of 0.154. The results show that this model is suitable for classifying normal and internally browned apples and that it can be applied for the sorting and evaluation of agricultural products for internal and external defects.

Development of Automatic Peach Grading System using NIR Spectroscopy

  • Lee, Kang-J.;Choi, Kyu H.;Choi, Dong S.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1267-1267
    • /
    • 2001
  • The existing fruit sorter has the method of tilting tray and extracting fruits by the action of solenoid or springs. In peaches, the most sort processing is supported by man because the sorter make fatal damage to peaches. In order to sustain commodity and quality of peach non-destructive, non-contact and real time based sorter was needed. This study was performed to develop peach sorter using near-infrared spectroscopy in real time and nondestructively. The prototype was developed to decrease internal and external damage of peach caused by the sorter, which had a way of extracting tray with it. To decrease positioning error of measuring sugar contents in peaches, fiber optic with two direction diverged was developed and attached to the prototype. The program for sorting and operating the prototype was developed using visual basic 6.0 language to measure several quality index such as chlorophyll, some defect, sugar contents. The all sorting result was saved to return farmers for being index of good quality production. Using the prototype, program and MLR(multiple linear regression) model, it was possible to estimate sugar content of peaches with the determination coefficient of 0.71 and SEC of 0.42bx using 16 wavelengths. The developed MLR model had determination coefficient of 0.69, and SEP of 0.49bx, it was better result than single point measurement of 1999's. The peach sweetness grading system based on NIR reflectance method, which consists of photodiode-array sensor, quartz-halogen lamp and fiber optic diverged two bundles for transmitting the light and detecting the reflected light, was developed and evaluated. It was possible to predict the soluble solid contents of peaches in real time and nondestructively using the system which had the accuracy of 91 percentage and the capacity of 7,200 peaches per an hour for grading 2 classes by sugar contents. Draining is one of important factors for production peaches having good qualities. The reason why one farm's product belows others could be estimated for bad draining, over-much nitrogen fertilizer, soil characteristics, etc. After this, the report saved by the peach grading system will have to be good materials to farmers for production high quality peaches. They could share the result or compare with others and diagnose their cultural practice.

  • PDF

Development of Nondestructive Sorting Method for Brown Bloody Eggs Using VIS/NIR Spectroscopy (가시광 및 근적외선 전투과 스펙트럼을 이용한 갈색 혈란 비파괴선별 방법 개발)

  • Lee, Hong-Seock;Kim, Dae-Yong;Kandpal, Lalit Mohan;Lee, Sang-Dae;Mo, Changyeun;Hong, Soon-Jung;Cho, Byoung-Kwan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.1
    • /
    • pp.31-37
    • /
    • 2014
  • The aim of this study was the non-destructive evaluation of bloody eggs using VIS/NIR spectroscopy. The bloody egg samples used to develop the sorting mode were produced by injecting chicken blood into the edges of egg yolks. Blood amounts of 0.1, 0.7, 0.04, and 0.01 mL were used for the bloody egg samples. The wavelength range for the VIS/NIR spectroscopy was 471 to 1154 nm, and the spectral resolution was 1.5nm. For the measurement system, the position of the light source was set to $30^{\circ}$, and the distance between the light source and samples was set to 100 mm. The minimum exposure time of the light source was set to 30 ms to ensure the fast sorting of bloody eggs and prevent heating damage of the egg samples. Partial least squares-discriminant analysis (PLS-DA) was used for the spectral data obtained from VIS/NIR spectroscopy. The classification accuracies of the sorting models developed with blood samples of 0.1, 0.07, 0.04, and 0.01 mL were 97.9%, 98.9%, 94.8%, and 86.45%, respectively. In this study, a novel nondestructive sorting technique was developed to detect bloody brown eggs using spectral data obtained from VIS/NIR spectroscopy.

Study on Development of Non-Destructive Measurement Technique for Viability of Lettuce Seed (Lactuca sativa L) Using Hyperspectral Reflectance Imaging (초분광 반사광 영상을 이용한 상추(Lactuca sativa L) 종자의 활력 비파괴측정기술 개발에 관한 연구)

  • Ahn, Chi-Kook;Cho, Byoung-Kwan;Mo, Chang Yeun;Kim, Moon S.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.5
    • /
    • pp.518-525
    • /
    • 2012
  • In this study, the feasibility of hyperspectral reflectance imaging technique was investigated for the discrimination of viable and non-viable lettuce seeds. The spectral data of hyperspectral reflectance images with the spectral range between 750 nm and 1000 nm were used to develop PLS-DA model for the classification of viable and non-viable lettuce seeds. The discrimination accuracy of the calibration set was 81.6% and that of the test set was 81.2%. The image analysis method was developed to construct the discriminant images of non-viable seeds with the developed PLS-DA model. The discrimination accuracy obtained from the resultant image were 91%, which showed the feasibility of hyperspectral reflectance imaging technique for the mass discrimination of non-viable lettuce seeds from viable ones.

Nondestructive Evaluation for the Viability of Watermelon (Citrullus lanatus) Seeds Using Fourier Transform Near Infrared Spectroscopy

  • Lohumi, Santosh;Mo, Changyeun;Kang, Jum-Soon;Hong, Soon-Jung;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.312-317
    • /
    • 2013
  • Purpose: Conventional methods used to evaluate seeds viability are destructive, time consuming, and require the use of chemicals, which are not feasible to implement to process plant in seed industry. In this study, the effectiveness of Fourier transform near infrared (FT-NIR) spectroscopy to differentiate between viable and nonviable watermelon seeds was investigated. Methods: FT-NIR reflectance spectra of both viable and non-viable (aging) seeds were collected in the range of 4,000 - 10,000 $cm^{-1}$ (1,000 - 2,500 nm). To differentiate between viable and non-viable seeds, a multivariate classification model was developed with partial least square discrimination analysis (PLS-DA). Results: The calibration and validation set derived from the PLS-DA model classified viable and non-viable seeds with 100% accuracy. The beta coefficient of PLS-DA, which represented spectral difference between viable and non-viable seeds, showed that change in the chemical component of the seed membrane (such as lipids and proteins) might be responsible for the germination ability of the seeds. Conclusions: The results demonstrate the possibility of using FT-NIR spectroscopy to separate seeds based on viability, which could be used in the development of an online sorting technique.