• Title/Summary/Keyword: Non-destructive Impact Test

Search Result 53, Processing Time 0.016 seconds

Impact Analyses for the Safety Checks of Used Wave Dissipation Concrete Block Considering Construction Phases (사용된 소파블록의 안전성 검토를 위한 시공단계별 충돌해석)

  • Huh, Taik-Nyung;Choi, Chang-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.640-647
    • /
    • 2018
  • Many harbor structures have been constructed, and some structures are now under construction in Korea, which is a peninsular state and a logistics hub in Northeast Asia. Expansions and extensions of existing harbors are also being planned to meet increasing natural disaster threats. Wave-dissipation concrete blocks are recycled or discarded based on the personal experience of engineers only, and there are no safety checks or criteria. To check the safety of used blocks, material evaluations were done by visual inspection of blocks on the ground and under water and from 20 non-destructive measurements of the rebound hardness test and 3 concrete core samples. Wave-dissipation blocks are sometimes fully or partially damaged in the process of transferring and mounting them or during construction. Therefore, a safety check is essential for recycling blocks with an evaluation of materials while considering the construction phases. To do this, a block was modeled with a 3D finite element method using ADINA, and impact analyses were done according to the transfer, mounting, and construction phases. From the results of the impact analyses and material evaluation, the safety checks and reasonable evaluation of used blocks were examined, and detailed construction methods are proposed. The methods are expected to maximize the reuse of used wave-dissipation blocks from an economical point of view.

Integrity evaluation of grouting in umbrella arch methods by using guided ultrasonic waves (유도초음파를 이용한 강관보강다단 그라우팅의 건전도 평가)

  • Hong, Young-Ho;Yu, Jung-Doung;Byun, Yong-Hoon;Jang, Hyun-Ick;You, Byung-Chul;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.3
    • /
    • pp.187-199
    • /
    • 2013
  • Umbrella arch method (UAM) used for improving the stability of the tunnel ground condition has been widely applied in the tunnel construction projects due to the advantage of obtaining both reinforcement and waterproof. The purpose of this study is to develop the evaluation technique of the integrity of bore-hole in UAM by using a non-destructive test and to evaluate the possibility of being applied to the field. In order to investigate the variations of frequency depending on grouted length, the specimens with different grouted ratios are made in the two constraint conditions (free boundary condition and embedded condition). The hammer impact reflection method in which excitation and reception occur simultaneously at the head of pipe was used. The guided waves generated by hitting a pipe with a hammer were reflected at the tip and returned to the head, and the signals were received by an acoustic emission (AE) sensor installed at the head. For the laboratory experiments, the specimens were prepared with different grouted ratios (25 %, 50 %, 75 %, 100 %). In addition, field tests were performed for the application of the evaluation technique. Fast Fourier transform and wavelet transform were applied to analyze the measured waves. The experimental studies show that grouted ratio has little effects on the velocities of guided waves. Main frequencies of reflected waves tend to decrease with an increase in the grouted length in the time-frequency domain. This study suggests that the non-destructive tests using guided ultrasonic waves be effective to evaluate the bore-hole integrity of the UAM in the field.

Evaluation of bonding state of shotcrete lining using nondestructive testing methods - experimental analysis (비파괴 시험 기법을 이용한 숏크리트 배면 접착상태 평가에 관한 실험적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.71-83
    • /
    • 2009
  • Shotcrete is an important primary support for tunnelling in rock. The quality control of shotcrete is a core issue in the safe construction and maintenance of tunnels. Although shotcrete may be applied well initially onto excavated rock surfaces, it is affected by blasting, rock deformation and shrinkage and can debond from the excavated surface, causing problems such as corrosion, buckling, fracturing and the creation of internal voids. This study suggests an effective non-destructive evaluation method of the tunnel shotcrete bonding state applied onto hard rocks using the impact-echo (IE) method and ground penetration radar (GPR). To verify previous numerical simulation results, experimental study carried out. Generally, the bonding state of shotcrete can be classified into void, debonded, and fully bonded. In the laboratory, three different bonding conditions were modeled. The signals obtained from the experimental IE tests were analyzed at the time domain, frequency domain, and time-frequency domain (i.e., the Short- Time Fourier transform). For all cases in the analyses, the experimental test results were in good agreement with the previous numerical simulation results, verifying this approach. Both the numerical and experimental results suggest that the bonding state of shotcrete can be evaluated through changes in the resonance frequency and geometric damping ratio in a frequency domain analysis, and through changes in the contour shape and correlation coefficient in a time-frequency analysis: as the bonding state worsens in hard rock condition, the autospectral density increases, the geometric damping ratio decreases, and the contour shape in the time-frequency domain has a long tail parallel to the time axis. The correlation coefficient can be effectively applied for a quantitative evaluation of bonding state of tunnel shotcrete. Finally, the bonding state of shotcrete can be successfully evaluated based on the process suggested in this study.