• Title/Summary/Keyword: Non-destructive Evaluation

Search Result 427, Processing Time 0.025 seconds

Evaluation of Dispersivity and Resistance of the Adhesive Joint According to Dispersion Methods of CNT (CNT 분산 방법에 따른 접착조인트의 저항 및 분산성 평가)

  • Lee, Bong-Nam;Kim, Cheol-Hwan;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.28 no.6
    • /
    • pp.348-355
    • /
    • 2015
  • NDT (Non Destructive Test) of the adhesive joints is very important because their strengths have greatly affected by the worker's skill and environmental condition. Recently, the electric impedance method in which 1-2 wt% CNT was dispersed in the adhesive and the electric resistance of the adhesive joint was measured was suggested for the defect detection of the adhesive joint. The uniform dispersion of CNT in the electric impedance method is very important to make a constant electric resistance of the adhesive joint and the accuracy of defect detection depends on the uniform dispersion. In this paper, the adhesive joints in which CNT was dispersed in the adhesive by the four dispersion methods were made and their electric resistance were measured. The pre-process and evaporation process of CNT using the ultrasonic method and agitation method was used and the effective dispersion method was suggested. Also, the criteria to evaluate the dispersivity was proposed.

STUDIES ON THE CHARACTERISTICS OF STONE STRUCTURES BY GEOTECHNICAL AND DYNAMIC STRUCTURAL ENGINEERINGS (석조구조물의 효율적 유지관리를 위한 지질공학적 및 구조동역학적 특성연구)

  • HoWoongShon;SungMinLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.277-294
    • /
    • 2003
  • Structures show the phenomena of deformation and lowering of function with time-lapse by artificial environments and changes of geotechnical conditions or accumulation of initial deformation elements. This study aims the structural assessment of cultural property, Chum-Sung-Dae, located in Kyeongjucity, Korea. It was built about 1,300 years ago, and has undergone deformation and ground-subsidence with time-lapse. Non-destructive evaluation techniques were applied to the Chum-Sung-Dae, to protect it from survey. Because of this reason, 3D precise laser scanning surveying system was applied to measure the exact size of Chum-Sung-Dae, displacement and declining angles. Geophysical exploration also was applied to study the subsurface distribution of geotechnical parameters or physical properties. Natural frequencies were measured from real and model of Chum-Sung-Dae to study the dynamic characteristics of vibration and/or earthquake load and stiffness of structures.

  • PDF

Elastic Wave Field Calculations (탄성파의 변형 및 응력 계산에 관한 연구)

  • 이정기
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.213-223
    • /
    • 1997
  • Calculation of elastic wave fields has important applications in a variety of engineering fields including NDE (Non-destructive evaluation). Scattering problems have been investigated by numerous authors with different solution schemes. For simple geometries of the scatterers (e.g., cylinders or spheres), the analysis of steady-state elastic wave scattering has been carried out using analytical techniques. For arbitrary geometries and multiple inclusions, numerical methods have been developed. Special finite element methods, e.g., the infinite element method and a hybrid method called the Global-Local finite element method have also been developed for this purpose. Recently, the boundary integral equation method has been used successfully to solve scattering problems. In this paper, a volume integral equation method (VIEM) is proposed as a new numerical solution scheme for the solution of general elasto-dynamic problems in unbounded solids containing multiple inclusions and voids or cracks. A boundary integral equation method (BIEM) is also presented for elastic wave scattering problems. The relative advantage of the volume and boundary integral equation methods for solving scattering problems is discussed.

  • PDF

Evaluation of Applicability of HWAW (Harmonic Wavelet Analysis of Waves) Method in Determining Grouting Effect in Dam and Embankment (제체 그라우팅 효과 평가를 위한 HWAW방법의 적용성 평가)

  • Noh, Hee-Kwan;Park, Hyung-Choon
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.5
    • /
    • pp.15-26
    • /
    • 2016
  • Dam and embankment are very important civil structures. Grouting is widely used to repair and maintain dam and embankment, and it is important to evaluate the effect of grouting for dam safety. The non-destructive method based on determination of wave velocity in the dam or embankment is effectively used to evaluate grouting effect because wave velocity is identical with stiffness and grouting increases local stiffness in a dam. In this paper, HWAW (Harmonic wavelet analysis of waves) method was applied to evaluate the grouting effect. HWAW method can determine two-dimensional shear wave velocity map with good spatial resolution and the shear velocity profile by the proposed method is sensitive to a variation of stiffness of target system. Through numerical simulation and field tests, the applicability of HWAW method in determining grouting effect is shown.

Monitoring Failure Behaviour of Pultruded CFRP Composites by Electrical Resistance Measurement

  • Mao, Yaqin;Yu, Yunhua;Wu, Dezhen;Yang, Xiaoping
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.18-22
    • /
    • 2004
  • The failure behaviours of unidirectional pultruded carbon fiber reinforced polymer (CFRP) composites were monitored by the electrical resistance measurement during tensile loading, three-point-bending, interlaminar shear loading. The tensile failure behaviour of carbon fiber tows was also investigated by the electrical resistance measurement. Infrared thermography non-destructive evaluation was performed in real time during tensile test of CFRP composites to validate the change of microdamage in the materials. Experiment results demonstrated that the CFRP composites and carbon fiber tows were damaged by different damage mechinsms during tensile loading, for the CFRP composites, mainly being in the forms of matrix damage and the debonding between matrix and fibers, while for the carbon fiber tows, mainly being in the forms of fiber fracture. The correlation between the infrared thermographs and the change in the electrical resistance could be regarded as an evidence of the damage mechanisms of the CFRP composites. During three-point-bending loading, the main damage forms were the simultaneity fracture of matrix and fibers firstly, then matrix cracking and the debonding between matrix and fiber were carried out. This results can be shown in Fig. 9(a) and (b). During interlaminar shear loading, the change in the electrical resistance was related to the damage degree of interlaminar structure. Electrical resistance measurement was more sensitive to the damage behaviour of the CFRP composites than the stress/time curve.

  • PDF

Evaluation and Determination of Air Void for Asphalt Concrete using a dielectric constant measurement (유전율 측정을 통한 아스팔트 콘크리트의 공극률 추정 연구)

  • Kim, Boo-Il;Kim, Yeong-Min;Cho, In-Sun
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.95-104
    • /
    • 2009
  • This study was conducted to evaluate the relationship between the dielectric constant and air void of asphalt concrete. Standard specimens that have air voids of various range $(0%{\sim}20%)$ were used to measure the dielectric constant using parallel plate method that measures low frequency dielectric constant. From the tests, dielectric constant of asphalt concrete was tend to decrease as the frequency was increased, and the decrement slope was varied with the types of asphalt binders. Dielectric constant was decreased linearly as air void was increased from zero to twenty percent. Consequently, the effect of temperature and moisture content on dielectric constants of asphalt concrete was evaluated to develop the standard curve between dielectric constant and air void of asphalt concrete. The standard curve developed in this study can be used to calibrate or develop the algorithm of non-destructive density gauge.

  • PDF

Effect of Process Parameters on Friction Stir Welds on AA2219-AA2195 Dissimilar Aluminum Alloys (마찰교반접합의 공정변수가 AA2219-AA2195 이종 알루미늄 접합에 미치는 영향)

  • No, Kookil;Yoo, Joon-Tae;Yoon, Jong-Hoon;Lee, Ho-Sung
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.331-338
    • /
    • 2017
  • This study was carried out to investigate the optimum condition of a friction stir welding process for a joint of AA2219-T87 and AA2195-T8 dissimilar aluminum alloys. These alloys are known to have good cryogenic properties, and as such to be suitable for use in fuel tanks of space vehicles. The welding parameters include the travelling speed, rotation speed and rotation direction of the tool. The experiment was conducted under conditions in which the travelling speed of the tool was 120-300 mm/min and the rotation speed of the tool was 400-800 rpm. To investigate the effect of the rotation direction of the tool, the joining was performed by switching the positions of the two dissimilar alloys. After welding, the microstructure was observed and the micro-hardness were measured; non-destructive evaluation was carried out to perform tensile tests on defect-free specimens. The result was that the microstructure of the weld joint underwent dynamic recrystallization due to sufficient deformation and frictional heat. The travelling speed of the tool had little effect on the properties of the joint, but the properties of the joint varied with the rotation speed of the tool. The conditions for the best joining properties were 600 rpm and 180-240 mm/min when the AA2219-T8 alloy was on the retreating side(RS).

Degradation Degree Evaluation of Heat Resisting Steel by Electrochemical Technique (Part I : Mechanism and Its Possibility of Field Application) (電氣化學的 方法에 의한 耐熱鋼의 劣化度 測定 제1보)

  • 정희돈;권녕각
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.598-607
    • /
    • 1992
  • The environment degradation of structural steel under high temperature is one of the key phenomena governing the availability and life of plant. This degradation resulted from the microstructural changes due to the long exposure at high temperature affect the mechanical properties such as creep strength and toughness. For instance, boiler tube materials usually tend to degrade, after long term operation, by precipitates, spherodizing, coarsening, and change in chemical composition of carbides. In this study, the material degradation under high temperature exposure was investigated by evaluating the carbide precipitation. The electrochemical polarization method was facilitated to investigate the precipitation and coarsening of carbides. It was shown by the modified electrochemical potentiokinetic reactivation (EPR) tests that the passivation of Mo-rich carbides did not occur even in the anodic peak current (Ip) which indicates the precipitation of Mo$_{6}$C was also observed. And it was assured that special electrolytic cell assembled in this research can be used for the detection of Mo$_{6}$C precipitation in the field.eld.

Transmission of ultrasonic guided wave for damage detection in welded steel plate structures

  • Liu, Xinpei;Uy, Brian;Mukherjee, Abhijit
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.445-461
    • /
    • 2019
  • The ultrasonic guided wave-based technique has become one of the most promising methods in non-destructive evaluation and structural health monitoring, because of its advantages of large area inspection, evaluating inaccessible areas on the structure and high sensitivity to small damage. To further advance the development of damage detection technologies using ultrasonic guided waves for the inspection of welded components in structures, the transmission characteristics of the ultrasonic guided waves propagating through welded joints with various types of defects or damage in steel plates are studied and presented in this paper. A three-dimensional (3D) finite element (FE) model considering the different material properties of the mild steel, high strength steel and austenitic stainless steel plates and their corresponding welded joints as well as the interaction condition of the steel plate and welded joint, is developed. The FE model is validated against analytical solutions and experimental results reported in the literature and is demonstrated to be capable of providing a reliable prediction on the features of ultrasonic guided wave propagating through steel plates with welded joints and interacting with defects. Mode conversion and scattering analysis of guided waves transmitted through the different types of weld defects in steel plates are performed by using the validated FE model. Parametric studies are undertaken to elucidate the effects of several basic parameters for various types of weld defects on the transmission performance of guided waves. The findings of this research can provide a better understanding of the transmission behaviour of ultrasonic guided waves propagating through welded joints with defects. The method could be used for improving the performance of guided wave damage detection methods.

Hyperspectral imaging technique to evaluate the firmness and the sweetness index of tomatoes

  • Rahman, Anisur;Park, Eunsoo;Bae, Hyungjin;Cho, Byoung-Kwan
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.823-837
    • /
    • 2018
  • The objective of this study was to evaluate the firmness and the sweetness index (SI) of tomatoes with a hyperspectral imaging (HSI) technique within the wavelength range of 1000 - 1550 nm. The hyperspectral images of 95 tomatoes were acquired with a push-broom hyperspectral reflectance imaging system, from which the mean spectra of each tomato were extracted from the regions of interest. The reference firmness and sweetness index of the same sample was measured and calibrated with their corresponding spectral data by partial least squares (PLS) regression with different preprocessing methods. The calibration model developed by PLS regression based on the Savitzky-Golay second-derivative preprocessed spectra resulted in a better performance for both the firmness and the SI of the tomatoes compared to models developed by other preprocessing methods. The correlation coefficients ($R_{pred}$) were 0.82, and 0.74 with a standard error of prediction of 0.86 N, and 0.63, respectively. Then, the feature wavelengths were identified using a model-based variable selection method, i.e., variable importance in projection, from the PLS regression analyses. Finally, chemical images were derived by applying the respective regression coefficients on the spectral image in a pixel-wise manner. The resulting chemical images provided detailed information on the firmness and the SI of the tomatoes. The results show that the proposed HSI technique has potential for rapid and non-destructive evaluation of firmness and the sweetness index of tomatoes.