• Title/Summary/Keyword: Non-contact type sensing method

Search Result 5, Processing Time 0.018 seconds

Non-contact type AFM using frequency separation scheme (주파수응답 분리방법을 이용한 비접촉식 AFM)

  • 이성규;염우섭;박기환;송기봉;김준호;김은경;박강호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.375-378
    • /
    • 2002
  • In this paper, the frequency response separation scheme is proposed for high scanning speed and simple structure of non-contact type of AFM. A self-sensing cantilever is attached on the actuator for detect the atomic force between tip and the media surface. VCM or PZT are used for actuator. This paper presents the method to simplify the actuator structure and the performance of each actuator for non-contact type AFM. Based on the frequency response separation scheme, the only one actuator plays roles 1311owing low frequency surface and modulating self-sensing cantilever tip in contrast with convention non-contact type AFM. 10 ${\mu}{\textrm}{m}$ standard grid sample imaged to verify proposed scheme. This result shows the possibility simplifying the actuator structure and reducing cost of non-contact type AFM.

  • PDF

An Analysis on the Effect of the Shape Features of the Textile Electrode on the Non-contact Type of Sensing of Cardiac Activity Based on the Magnetic-induced Conductivity Priciple (직물 전극의 형상 특성이 자계 유도성 전도율 기반의 비접촉식 심장활동 센싱에 미치는 효과의 분석)

  • Gi, Sun Ok;Lee, Young Jae;Koo, Hye Ran;Khang, Seon Ah;Park, Hee Jung;Kim, Kyeong Seop;Lee, Joo Hyeon;Lee, Jeong Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.6
    • /
    • pp.803-810
    • /
    • 2013
  • The purpose of this research is to analyze the effect of shape of the inductive textile electrode on the non-contact heart activity sensing, based on the magnetic-induced conductivity principle. Four types of the inductive textile electrodes were determined according to the combinations of the two shape features. A fiber-metal hybrid-typed conductive thread was developed and applied to materialization of the textile electrodes by embroidery method. The heart activity was extracted through the textile electrode sewn on a T-shirt. The experiments were implemented to constantly measure the heart activity for 20 seconds, in each case of 5 healthy male subjects. The heart activity signals acquired in each type of the inductive textile electrode were analyzed, 1)by drawing a comparison of morphology with those of ECG signal (LeadII), and 2)by calculation of the normalized mean and standard deviation of magnitude of the heart activity signals. The analysis resulted that the relatively better quality of signals were acquired in the 'square' types in the matter of whole shape, while the better results were obtained in 'donut' types in the matter of center hole. Accordingly, the relatively best quality of signals was obtained in the case of 'Square-Donut' type of the inductive textile electrode.

Effect of Module Design for a Garment-Type Heart Activity Monitoring Wearable System Based on Non-Contact Type Sensing (비접촉식 심장활동 모니터링 기능 의복형 웨어러블 시스템의 모듈 효과 탐색)

  • Koo, Hye Ran;Lee, Young-Jae;Gi, Sunok;Lee, Seung Pyo;Kim, Kyeng Nam;Kang, Seung Jin;Lee, Jeong-Whan;Lee, Joo Hyeon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.39 no.3
    • /
    • pp.369-378
    • /
    • 2015
  • Various forms of wearable bio-signal monitoring systems have been developed recently. Acquisition of stable bio-signal data for health care purposes needs to be unconscious and continuous without hindrance to the users' daily activities. The garment type is a suitable form of a wearable bio-signal monitoring system; however, motion artifacts caused by body movement degrade the signal quality during the measurement of bio-signals. It is crucial to stabilize the electrode position to reduce motion artifacts generated when in motion. The problems with motion artifacts remain unresolved despite their significant effect on bio-signal monitoring. This research creates a foundation for the design of garment-type wearable systems for everyday use by finding a method to reduce motion artifacts through modular design. Two distinct garment-type wearable systems (tee-shirt with a motion artifact-reducing module (MARM) and tee-shirt without a MARM) were designed to compare the effects of modular design on the measurement of heart activity in terms of electrode position displacement, signal quality index value, and morphological quality. The tee-shirt with MARM showed superior properties and yielded higher quality signals than the tee-shirt without MARM. In addition, the tee-shirt with MARM showed a better repeatability of the heart activity signals. Therefore, a garment design with MARM is an efficient way to acquire stable bio-signals while in motion.

Application of a Textile-based Inductive Sensor for the Vital Sign Monitoring

  • Gi, Sun Ok;Lee, Young Jae;Koo, Hye Ran;Khang, Seonah;Kim, Kyung-Nam;Kang, Seung-Jin;Lee, Joo Hyeon;Lee, Jeong-Whan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.364-371
    • /
    • 2015
  • In this study, we developed a feasible structure of a textile-based inductive sensor using a machine embroidery method, and applied it to a non-contact type vital sign sensing device based on the principle of magnetic-induced conductivity. The mechanical heart activity signals acquired through the inductive sensor embroidered with conductive textile on fabric were compared with the Lead II ECG signals and with respiration signals, which were simultaneously measured in every case with five subjects. The analysis result showed that the locations of the R-peak in the ECG signal were highly associated with sharp peaks in the signals obtained through the textile-based inductive sensor (r=0.9681). Based on the results, we determined the feasibility of the developed textile-based inductive sensor as a measurement device for the heart rate and respiration characteristics.

Evaluation on performances of a real-time microscopic and telescopic monitoring system for diagnoses of vibratory bodies

  • Jeon, Min Gyu;Doh, Deog Hee;Kim, Ue Kan;Kim, Kang Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1275-1280
    • /
    • 2014
  • In this study, the performance of a real-time micro telescopic monitoring system is evaluated, in which an artificial neural network is adopted for the diagnoses of vibratory bodies, such as solid piping system or machinery. The structural vibration was measured by a non-contact remote sensing method, in which images of a high-speed high-definition camera were used. The structural vibration data that can be obtained by the PIV (particle image velocimetry) technique were used for training the neural network. The structures of the neural network are dynamically changed and their performances are evaluated for the constructed diagnosis system. Optimized structures of the neural network are proposed for real-time diagnosis for the piping system. It was experimentally verified that the performances of the neural network used for real-time monitoring are influenced by the types of the vibration data, such as minimum, maximum and average values of the vibration data. It concludes that the time-mean values are most appropriate for monitoring the piping system.