• Title/Summary/Keyword: Non-circular

Search Result 646, Processing Time 0.024 seconds

Comparison of Generated Loads by Hydroponics of Strawberry, Tomato, and Paprika in Gyeongsangnam-do (경남지역 딸기, 토마토, 파프리카 양액재배에 따른 발생부하량 비교)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.5
    • /
    • pp.73-81
    • /
    • 2021
  • The objective of this study was to analyze the waste nutrient generation loads from hydroponics for three major crops in Gyeongsangnam-do. Study hydroponic farms were selected for the three major crops such as paprika, strawberry, tomato based on the agricultural statistics data and field investigation. The flow amount and water quality for inflow and outflow of study hydroponic farms were monitored and analyzed on a monthly basis. Monitored samples were analyzed in terms of DO, BOD, T-N, T-P, SS, and EC. The generated load of BOD, T-N, and T-P were calculated from the monitored flow and water quality. The monitoring results showed that the drainage ratio for the circular hydroponic farm was lower than the non-circular hydroponic farm because the outflow from the circular hydroponics were much lower than that from the non-circular. The generated load calculation results showed that the BOD tended to have a smaller value than the TMDLs guideline for land, while T-N and T-P showed higher value than that from the TMDLs guideline. In order to effectively manage the pollutant load discharged from the hydroponics farming complex, it is necessary to manage the non-circulating hydroponics farm. To improve water quality, it is necessary to gradually expand the circulating hydroponics farm through policy and economic support.

Free Vibrations of Non-Circular Arches with Elastic Supports (탄성지점을 갖는 변화곡률 아치의 자유진동)

  • Oh, Sang-Jin;Kim, Gwon-Sik;Park, Kwang-Kyou
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.340-343
    • /
    • 2007
  • The differential equations governing free, in-plane vibrations of non-circular arches with the translational (radial and tangential directions) and rotational springs at the ends, including the effects of rotatory inertia, shear deformation and axial deformation, are solved numerically using the corresponding boundary conditions. The lowest four natural frequencies for the parabolic geometry are calculated over a range of non-dimensional system parameters: the arch rise to span length ratio, the slenderness ratio, and the translational and rotational spring parameters.

  • PDF

Elastic-plastic fracture of functionally graded circular shafts in torsion

  • Rizov, Victor I.
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.299-318
    • /
    • 2016
  • Analytical investigations were performed of a longitudinal crack representing a cylindrical surface in circular shafts loaded in torsion with taking into account the non-linear material behavior. Both functionally graded and multilayered shafts were analyzed. It was assumed that the material is functionally graded in radial direction. The mechanical behavior of shafts was modeled by using non-linear constitutive relations between the shear stresses and shear strains. The fracture was studied in terms of the strain energy release rate. Within the framework of small strain approach, the strain energy release rate was derived in a function of the torsion moments in the cross-sections ahead and behind the crack front. The analytical approach developed was applied to study the fracture in a clamped circular shaft. In order to verify the solution derived, the strain energy release rate was determined also by considering the shaft complimentary strain energy. The effects were evaluated of material properties, crack location and material non-linearity on the fracture behavior. The results obtained can be applied for optimization of the shafts structure with respect to the fracture performance. It was shown that the approach developed in the present paper is very useful for studying the longitudinal fracture in circular shafts in torsion with considering the material non-linearity.

An Experimental Study of Discharge Coefficient with Non-Circular Effervescent Type Twin-fluid Nozzle (비원형 Effervescent Type 이유체노즐의 Discharge Coefficient에 관한 실험적 연구)

  • Lee, Sang Ji;Park, Hyung Sun;Hong, Jung Goo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.682-685
    • /
    • 2017
  • An experimental study was carried out to investigate the injection characteristics of non-circular effervescent type twin-fluid nozzles. For this purpose, two types of non-circular nozzles (E1, E2) and one kind of circular nozzle (C) were used. At this time, the Aerorator mounted on the nozzle used three different diameters to match the aspect ratio with the nozzle exit area. Therefore, experiments were performed according to three aspect ratios for each nozzle, and a total experiments were conducted. Experiments were carried out by controlling the amount of air flowing after fixing the flow rate of the liquid, and the nozzle internal pressure and SMD were measured, and the jet image was taken from the nozzle. The discharge coefficients of the three kinds of nozzles were compared with the conventional equation and the Jedelsky's equation, and the Jedelsky's equation was found to be about 4 times larger. The droplet size (SMD) injected from the nozzle was found to be smaller in the non-circular shape than in the circular shape, which is expected to be caused by the difference of the discharge coefficient values.

  • PDF

An Investigation of Heat Transfer Characteristics of Swirling Flow in a 180$^{\circ}$ Circular Section Bend with Uniform Heat Flux

  • Chang, Tae-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1520-1532
    • /
    • 2003
  • An experiment was performed to obtain the local heat transfer coefficient and Nusselt number in a circular duct with a 180$^{\circ}$ bend for Re=6 x 10$^4$, 8 x 10$^4$ and 1 x 10$\^$5/ under swirling flow and non-swirling flow conditions. The test tube with a circular section was made from stainless steel having a curvature ration of 9.4. Current heat flux of 5.11 kW/㎡ was applied to the test tube by electrical power and the swirling motion of air was produced by a tangential inlet to the pipe axis at 180$^{\circ}$. Measurements of local wall temperatures and the bulk mean temperatures of air were made at four circumferential positions at 16 stations. The wall temperatures showed a reduced distribution curve at the bend for the non-swirling flow, but this effect did not appear for the swirling flow. The Nusselt number distributions for the swirling flow, which was calculated from the measured wall and the bulk temperatures, were higher than that of the non-swirling flow. The average Nusselt number of the swirling flow increased by about 90-100%, compared to that of the non-swirling flow. The Nu/Nu$\_$DB/ values at the 90$^{\circ}$ station for non-swirling flow and swirling flow were approximately 2.5 and 4.8 at Re=6x10$^4$ respectively. The values agree well with Said's results for non-swirling flow.

CIRCULAR UNITS IN A BICYCLIC FUNCTION FIELD

  • Ahn, Jaehyun;Jung, Hwanyup
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • For a real subextension of some cyclotomic function field with a non-cyclic Galois group order $l^2$, l being a prime different from the characteristic of function field, we compute the index of the Sinnott group of circular units.

  • PDF

Non-Planar Non-Linear Vibration Phenomenon on the One to One Resonance of the Circular Cantilever Beam (원형 외팔보의 일대일 공진에서의 비평면 비선형 진동현상)

  • Park Chul-Hui;Cho Chongdu;Kim Myoung-Gu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.171-178
    • /
    • 2006
  • Experimental and theoretical study of the non-planar response motions of a circular cantilever beam subject to base harmonic excitation has been presented in this paper work. Theoretical research is conducted using two non-linear coupled integral-differential equations of motion. These equations contain cubic linearities due do curvature term and inertial term. A combination of the Galerkin procedure and the method of multiple scales are used to construct a first-order uniform expansion for the case of one-to-one resonance. The results show that the non-linear geometric terms are very important for the low-frequency modes of the first and second mode. The non-linear inertia terms are also important for the high-frequency modes. We present the quantitative and qualitative results for non-planar motions of the dynamic behavior.

Blank Design for the General Shaped Deep Drawing Products by F.E.M (유한요소법을 이용한 임의의 단면 딥드로잉 제품의 소재형상설계)

  • Kim, Sang-Do;Park, Min-Ho;Seo, Dae-Gyo
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.302-321
    • /
    • 1995
  • A method of determining an optimum blank shape for the non-circular deep drawing process is investigated. The rigid-plastic finite element method is introduced and the computer program code is developed. The ideal shape of a drawn cup with uniform wall height is assumed and metal flow is traced back-ward step by step to predict an initial blank shape of the ideal cup. For examples of the non-circular deep drawing products, three cases of drawn cup with quadrilateral punch shape are considered and optimum blank shapes for each case are proposed and compared with experimental results.

  • PDF

Conjugated heat transfer on convection heat transfer from a circular tube in cross flow (원관 주위의 대류 열전달에 대한 복합 열전달)

  • 이승홍;이억수;정은행
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.523-534
    • /
    • 1998
  • The convection heat transfer on horizontal circular tube is studied as a conjugated heat transfer problem. With uniform heat generation in a cylindrical heater placed in a cross flow boundary condition, heat flow that is conducted along the wall of the heater creates a non-isothermal surface temperature and non-uniform heat flux distribution. In the present investigation, the effects of circumferential wall heat conduction on convection heat transfer are investigated for the case of forced convection around horizontal circular tube in cross flow of air and water. Non-dimensional conjugation parameter $ K^*$ which can be deduced from the governing energy differential equation should be used to express the effect of circumferential wall heat conduction. Two-dimensional temperature distribution$ T({\gamma,\theta})$ is presented. The influence of circumferential wall heat conduction is demonstrated on graph of local Nusselt number.

  • PDF

Direct position tracking method for non-circular signals with distributed passive arrays via first-order approximation

  • Jinke Cao;Xiaofei Zhang;Honghao Hao
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.421-431
    • /
    • 2024
  • In this study, a direct position tracking method for non-circular (NC) signals using distributed passive arrays is proposed. First, we calculate the initial positions of sources using a direct position determination (DPD) approach; next, we transform the tracking into a compensation problem. The offsets of the adjacent time positions are calculated using a first-order Taylor expansion. The fusion calculation of the noise subspace is performed according to the NC characteristics. Because the proposed method uses the signal information from the previous iteration, it can realize automatic data associations. Compared with traditional DPD and two-step localization methods, our novel process has lower computational complexity and provides higher accuracy. Moreover, its performance is better than that of the traditional tracking methods. Numerous simulation results support the superiority of our proposed method.