• Title/Summary/Keyword: Non-building Structures

Search Result 379, Processing Time 0.028 seconds

Compressive Stress Distribution of Concrete for Performance-Based Design Code (성능 중심 설계기준을 위한 콘크리트 압축응력 분포)

  • Lee, Jae-Hoon;Lim, Kang-Sup;Hwang, Do-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.365-376
    • /
    • 2011
  • The current Concrete Structural Design Code (2007) prescribe the equivalent rectangular stress block of the ACI 318 Building Code as concrete compressive stress distribution for design of concrete structures. The rectangular stress block may be enough for flexural strength calculation, but realistic stress-strain relationship is required for performance verification at selected limit state in performance-based design. Moreover, the ACI rectangular stress block provides non-conservative flexural strength for high strength concrete columns. Therefore a new stress distribution model is required for development of performance-based design code. This paper proposes a concrete compressive stress-strain distribution model for design and performance verification. The proposed model has a parabolic-rectangular shape, which is adopted by Eurocode 2 and Japanese Code (JSCE). It was developed by investigation of experimental test results conducted by the authors and other researchers. The test results cover high strength concrete as well as normal strength concrete. The stress distribution parameters of the proposed models are compared to those of the ACI 318 Building Code, Eurocode 2, Japanese Code (JSCE) and Canadian Code (CSA) as well as the test results.

A Study on Local Landscape Image of Barn Architecture (축산시설의 지역경관적 이미지에 관한 연구)

  • Chong, Geon Chai;Kim, Gapdeug
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.18 no.2
    • /
    • pp.55-62
    • /
    • 2016
  • The goal of this study is to recreate the identification of landscape image through the Agricultural Architecture in rural area. Most of them are not kept with houses in traditional village and the other structures in garden area of Korea, because they are located in the isolated field or placed near along the local street, are designed as a very heavily designed building, and are covered by different materials and color against village architecture. I researched cattle barns in both Korea and Germany of what they have had images in a distance-view points of local area, so that I might find a suitable image of Barn Architecture with topography of rural areas. I surveyed rural agricultural buildings with different point of views on landscape structure, architectural form and materials, and conditions animal welfare. There are three results from this paper as follows: First, the placement of animal barn in garden area is isolated to village so that it may keep a clean environment of village, which it makes non appropriate to land using and village view. Second, the architectural form makes a different image to the village building, because it has an oversize against houses in village or has no rhythm and dividing form of simple gable barm. Third, the barn architecture is better to consider of eco-friendly materials with animal welfare concept design, when it starts to design the barn in the field.

Visualizations of Relational Capital for Shared Vision

  • Russell, Martha G.;Still, Kaisa;Huhtamaki, Jukka;Rubens, Neil
    • World Technopolis Review
    • /
    • v.5 no.1
    • /
    • pp.47-60
    • /
    • 2016
  • In today's digital non-linear global business environment, innovation initiatives are influenced by inter-organizational, political, economic, environmental, technological systems, as well as by decisions made individually by key actors in these systems. Network-based structures emerge from social linkages and collaborations among various actors, creating innovation ecosystems, complex adaptive systems in which entities co-create value. A shared vision of value co-creation allows people operating individually to arrive together at the same future. Yet, relationships are difficult to see, continually changing and challenging to manage. The Innovation Ecosystem Transformation Framework construct includes three core components to make innovation relationships visible and articulate networks of relational capital for the wellbeing, sustainability and business success of innovation ecosystems: data-driven visualizations, storytelling and shared vision. Access to data facilitates building evidence-based visualizations using relational data. This has dramatically altered the way leaders can use data-driven analysis to develop insights and provide ongoing feedback needed to orchestrate relational capital and build shared vision for high quality decisions about innovation. Enabled by a shared vision, relational capital can guide decisions that catalyze, support and sustain an ecosystemic milieu conducive to innovation for business growth.

Deterministic manipulation and visualization of near field with ultra-smooth, super-spherical gold nanoparticles by atomic force microscopy

  • KIM, MINWOO;LEE, JOOHYUN;YI, GI-RA;LEE, SEUNGWOO;SONG, YOUNG JAE
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.111.1-111.1
    • /
    • 2015
  • As an alternative way to get sophisticated nanostructures, atomic force microscopy (AFM) has been used to directly manipulate building primitives. In particular, assembly of metallic nanoparticles(NPs) can provide various structures for making various metamolecules. As far, conventionally made polygonal shaped metallic NPs showed non-uniform distribution in size and shape which limit its study of fundamental properties and practical applications. In here, we optimized conditions for deterministic manipulation of ultra-smooth and super-spherical gold nanoparticles (AuNPs) by AFM. [1] Lowered adhesion force by using platinum-iridium coated AFM tips enabled us to push super-spherical AuNPs in linear motion to pre-programmed position. As a result, uniform and reliable electric/magnetic behaviors of assembled metamolecules were achieved which showed a good agreement with simulation data. Furthermore, visualization of near field for super-spherical AuNPs was also addressed using photosensitive azo-dye polymers. Since the photosensitive azo-dye polymers can directly record the intensity of electric field, optical near field can be mapped without complicated instrumental setup. [2] By controlling embedding depth of AuNPs, we studied electric field of AuNPs in different configuration.

  • PDF

Interval finite element analysis of masonry-infilled walls

  • Erdolen, Ayse;Doran, Bilge
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.73-84
    • /
    • 2012
  • This paper strongly addresses to the problem of the mechanical systems in which parameters are uncertain and bounded. Interval calculation is used to find sharp bounds of the structural parameters for infilled frame system modeled with finite element method. Infill walls are generally treated as non-structural elements considerably to improve the lateral stiffness, strength and ductility of the structure together with the frame elements. Because of their complex nature, they are often neglected in the analytical model of building structures. However, in seismic design, ignoring the effect of infill wall in a numerical model does not accurately simulate the physical behavior. In this context, there are still some uncertainties in mechanical and also geometrical properties in the analysis and design procedure of infill walls. Structural uncertainties can be studied with a finite element formulation to determine sharp bounds of the structural parameters such as wall thickness and Young's modulus. In order to accomplish this sharp solution as much as possible, interval finite element approach can be considered, too. The structural parameters can be considered as interval variables by using the interval number, thus the structural stiffness matrix may be divided into the product of two parts which correspond to the interval values and the deterministic value.

Inundation Map at Imwon Port with Past and Virtual Tsunamis (과거 및 가상 지진해일에 의한 임원항의 침수예상도)

  • Kim, Tae-Rim;Cho, He-Rin;Cho, Yong-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • The scale of disaster and damage witnessed in the 2004 Indian Ocean Tsunami and the 2011 Great East Japan Tsunami has motivated researchers in developing foolproof disaster mitigation techniques for safety of coastal communities. This study focuses on developing tsunami hazard map by numerical modeling at Imwon Port to minimize losses of human beings and property damage when a real tsunami event occurs. A hazard map is developed based on inundation maps obtained by numerical modeling of 3 past and 11 virtual tsunami cases. The linear shallow-water equations with manipulation of frequency dispersion and the non-linear shallow-water equations are employed to obtain inundation maps. The inundation map gives the maximum extent of expected flooded area and corresponding inundation depths which helps in identifying vulnerable areas for unexpected tsunami attacks. The information can be used for planning and developing safety zones and evacuation structures to minimize damage in case of real tsunami events.

A Study on the Analysis and Improvement methods of Emergency Medical Service Systems for Large Scaled Fire (대형화재에 대비한 응급의료체계에 관한 분석과 개선방안)

  • Lee, Maria
    • The Korean Journal of Emergency Medical Services
    • /
    • v.11 no.1
    • /
    • pp.41-52
    • /
    • 2007
  • In Korea, Crowds, as well as more complex and larger structures, have been caused more victims in the event of fire. In that situation, EMSS should have done triage the patients according to their severity in the field, treat with standard guidelines as like advanced burn life support and transfer to appropriate facility. But in many cases, they didn't practice like that. The purpose of this study is to give basic data for proper emergency medical services by analysing EMSS of large scaled fire in Korea and suggesting some improvement methods. The improvment methods are like this ; First, developing of protocols about burn patient is needed for EMT and dispatcher. Second, Legal approval for advanced treatment is needed for EMT. Third, Fire-helicoptors are needed in Daejeon and Jeju. And Emergency Medical Helicoptors are needed in EMSS. Forth, more advanced emergency medical centers of burn must be established. Sixth, more pocket-mask and burn sheet are needed for 119 rescuer. Finally, building owners must change inflammable materials as non-inflammable materials and educate fire-prevention and first-aid to employees.

  • PDF

Seismic design of irregular space steel frames using advanced methods of analysis

  • Vasilopoulos, A.A.;Bazeos, N.;Beskos, D.E.
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.53-83
    • /
    • 2008
  • A rational and efficient seismic design methodology for irregular space steel frames using advanced methods of analysis in the framework of Eurocodes 8 and 3 is presented. This design methodology employs an advanced static or dynamic finite element method of analysis that takes into account geometrical and material non-linearities and member and frame imperfections. The inelastic static analysis (pushover) is employed with multimodal load along the height of the building combining the first few modes. The inelastic dynamic method in the time domain is employed with accelerograms taken from real earthquakes scaled so as to be compatible with the elastic design spectrum of Eurocode 8. The design procedure starts with assumed member sections, continues with the checking of the damage and ultimate limit states requirements, the serviceability requirements and ends with the adjustment of member sizes. Thus it can sufficiently capture the limit states of displacements, rotations, strength, stability and damage of the structure and its individual members so that separate member capacity checks through the interaction equations of Eurocode 3 or the usage of the conservative and crude q-factor suggested in Eurocode 8 are not required. Two numerical examples dealing with the seismic design of irregular space steel moment resisting frames are presented to illustrate the proposed method and demonstrate its advantages. The first considers a seven storey geometrically regular frame with in-plan eccentricities, while the second a six storey frame with a setback.

Material modeling of steel fiber reinforced concrete

  • Thomee, B.;Schikora, K.;Bletzinger, K.U.
    • Computers and Concrete
    • /
    • v.3 no.4
    • /
    • pp.197-212
    • /
    • 2006
  • Modeling of physically non-linear behavior becomes more and more important for the analysis of SFRC structures in practical applications. From this point of view we will present an effective, three-dimensional constitutive model for SFRC, that is also easy to implement in commercial finite element programs. Additionally, the finite element analysis should only require standard material parameters which can be gained easily from conventional experiments or which are specified in appropriate building codes. Another important point is attaining the material parameters from experimental data. The procedures to determine the material parameters proposed in appropriate codes seem to be only approximations and are unsuitable for precise structural analysis. Therefore a finite element analysis of the test itself is used to get the material parameters. This process is also denoted as inverse analysis. The efficiency of the proposed constitutive model is demonstrated on the basis of numerical examples and their comparison to experimental results. In the framework of material parameter identification the idea of a new, indirect tension testing procedure, the "Modified Tension Test", is adopted and extended to an easy-to-carry-out tension test for steel fiber reinforced concrete specimens.

SEISMIC ISOLATION OF LEAD-COOLED REACTORS: THE EUROPEAN PROJECT SILER

  • Forni, Massimo;Poggianti, Alessandro;Scipinotti, Riccardo;Dusi, Alberto;Manzoni, Elena
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.595-604
    • /
    • 2014
  • SILER (Seismic-Initiated event risk mitigation in LEad-cooled Reactors) is a Collaborative Project, partially funded by the European Commission in the $7^{th}$ Framework Programme, aimed at studying the risk associated to seismic-initiated events in Generation IV Heavy Liquid Metal reactors, and developing adequate protection measures. The project started in October 2011, and will run for a duration of three years. The attention of SILER is focused on the evaluation of the effects of earthquakes, with particular regards to beyond-design seismic events, and to the identification of mitigation strategies, acting both on structures and components design. Special efforts are devoted to the development of seismic isolation devices and related interface components. Two reference designs, at the state of development available at the beginning of the project and coming from the $6^{th}$ Framework Programme, have been considered: ELSY (European Lead Fast Reactor) for the Lead Fast Reactors (LFR), and MYRRHA (Multi-purpose hYbrid Research Reactor for High-tech Applications) for the Accelerator-Driven Systems (ADS). This paper describes the main activities and results obtained so far, paying particular attention to the development of seismic isolators, and the interface components which must be installed between the isolated reactor building and the non-isolated parts of the plant, such as the pipe expansion joints and the joint-cover of the seismic gap.