• Title/Summary/Keyword: Non-building Structures

Search Result 379, Processing Time 0.029 seconds

Numerical Simulation of Non-linear Free-surface Motions Using Moving Particle Semi-implicit(MPS) Method (입자법을 이용한 비선형성 자유표면 유동의 수치 시뮬레이션)

  • Lee, Byung-Hyuk;Jeong, Seong-Jun;Ryu, Min-Cheol;Kim, Yong-Soo;Kim, Young-Hun;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.53-58
    • /
    • 2007
  • A particle method, recognized as one of gridless methods, has been developed to investigate non-linear free-surface motions interacting with structures. This method is more feasible and effective than conventional grid methods for solving flow fieldswith complicated boundary shapes. The method consists of particle interaction models representing pressure gradient, diffusion, incompressibility, and the free-surface boundary conditions without grids. In the present study, broken dam problems with various viscosity values are simulated to validate the developed method.

A Study on the Structural Performance of the Building Exterior Panel Using the Moving Clips (이동 클립을 이용한 건축물 외장재의 구조적 성능에 관한 연구)

  • Kwak, Eui-Shin;Ki, Chang-Gun;Lee, Sang-Ho;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.29-36
    • /
    • 2017
  • A recent global trend in the increase of earthquake-related disasters has become so frequent as to cause various damages to a wide range of mid- to high-rise buildings. Particularly, more attention is being paid to the effect of horizontal load in high-rise buildings not only on the key structural elements of the structures, but also on the possibility of the secondary damages to them due to the failure of exterior panels, which are non-structural elements, but such damages are difficult to cope with as they may be caused by unexpected changes. The present study examined exterior panels using moving clips to prevent such secondary damages on the non-structural elements and analyzed the structural performance of these exterior panels through the finite element analysis and the shaking table test. The analysis results showed that the exterior panels using moving clips satisfied the structural performance against the allowable story drift of KBC2009 and the safety of the exterior panels was verified by the shake table test.

Causes of local collapse of a precast industrial roof after a fire

  • Bruno Dal Lago;Paride Tucci
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.371-384
    • /
    • 2023
  • Precast roofing systems employing prestressed elements often serve as smart structural solutions for the construction of industrial buildings. The precast concrete elements usually employed are highly engineered, and often consist in thin-walled members, characterised by a complex behaviour in fire. The present study was carried out after a fire event damaged a precast industrial building made with prestressed beam and roof elements, and non-prestressed curved barrel vault elements interposed in between the spaced roof elements. As a consequence of the exposure to the fire, the main elements were found standing, although some locally damaged and distorted, and the local collapse of few curved barrel vault elements was observed in one edge row only. In order to understand and interpret the observed structural performance of the roof system under fire, a full fire safety engineering process was carried out according to the following steps: (a) realistic temperature-time curves acting on the structural elements were simulated through computational fluid dynamics, (b) temperature distribution within the concrete elements was obtained with non-linear thermal analysis in variable regime, (c) strength and deformation of the concrete elements were checked with non-linear thermal-mechanical analysis. The analysis of the results allowed to identify the causes of the local collapses occurred, attributable to the distortion caused by temperature to the elements causing loss of support in early fire stage rather than to the material strength reduction due to the progressive exposure of the elements to fire. Finally, practical hints are provided to avoid such a phenomenon to occur when designing similar structures.

Development of Damage Estimation Method using Sensor of Multiple Function in RC Beam (철근 콘크리트 보에서의 다기능 센서를 이용한 손상 추정법 개발)

  • Kim, Ie-Sung;Park, Kang-Geon;Kim, Wha-Jung
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.184-188
    • /
    • 2008
  • Performance degradation of concrete structures is generally caused by structural deteriorations, such as cracks. It may result in serious defects of concrete structures. Methods of damage detection are used a visual angle of human or non-destructive test, and they are using various sensors. Problems of crack damage detection are occurred to directions of cracks by using 1 axial type of accelerometer in concrete element. In addition, these sensors are not used to occurring fire in RC building. Thermocouple sensors are able to using measurement of temperature in fire, and then deformations of main element and structures are not used. In this study, fundamental studies for development of multiple function sensor using 3 axial type of accelerometer and electric resistance property of thermocouple sensors are discussed estimation to stability of structures when happened form active load or fire, and so on.

  • PDF

Seismic Evaluation of Steel Moment Frame Buildings based on Different Response Modification Factors and Fundamental Periods (반응수정계수와 주기의 영향에 대한 철골모멘트저항골조 건물의 내진성능평가)

  • Shin, Ji-Wook;Lee, Ki-Hak;Lee, Do-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.5
    • /
    • pp.47-56
    • /
    • 2008
  • This study was performed to evaluate the effect of Response modification factors (R-factor) in 3-, 9- and 20- story steel Moment Resisting Frame (MRF) buildings. Each structure was designed using a R-factor of 8, as tabulated in the 2000 International Building Code provision (IBC 2000) and Korea Building Code (KBC) 2008. In order to evaluate the maximum and minimum performance expected for such structures, an upper bound and lower bound design were adopted for each model. Next, each analytical model was designed using different R-factors (8, 9, 10, 11, 12) and four different structural periods with the original fundamental period. For a detailed case study, a total of 150 analytical models were subjected to 20 ground motions representing a hazard level with a 2% probability of being exceeded in 50 years. In order to evaluate the performance of the structures, static push-over and non-linear time history analysis (NTHA) were performed, and displacement ductility demand was investigated to consider the ductility capacity of the structures. The results show that the dynamic behaviors for the 3- and 9-story buildings are relatively stable and conservative, while the 20-story buildings show a large displacement ductility demand due to dynamic instability factors. (e.g. P-delta effect and high mode effect)

Shaking Table Test of a 1/10 Scale Isolated Fifteen-story Flat Plate Apartment Building (면진층을 가지는 1/10 축소된 15층 무량판 아파트건물의 진동대 실험)

  • Chun, Young-Soo
    • Land and Housing Review
    • /
    • v.2 no.3
    • /
    • pp.287-297
    • /
    • 2011
  • This paper presents the results of performance verification tests of the isolated flat plate apartment building with the laminated rubber bearings. The shaking table test is carried out in CABR(China Academy of Building Research) with two 1/10 scale isolation and non-isolation models under 4 excitation waves. The shaking table test is proceeding from x axis, y axis and x+y axis with different amplitude of acceleration values. The results show that, to non-isolated model, the natural vibration period is remarkably decreased and entered non-linear condition after moderate earthquake. Its accelerations become lager with increasing storey number and completely collapsed under large earthquake. The inter-storey shifts largely exceed the limit values of regulated displacement angles. But to isolated model, the natural vibration period of isolated modal is almost the same in all conditions and still in its elastic condition. The earthquake loading is greatly reduced and the accelerations of superstructure are greatly reduced. The inter-storey drifts are very small and can be neglected. The isolated model is in translational state and can be seen as a rigid whole. The displacements of isolation layer are in the allowable range. This experiment demonstrates that the seismic isolation is very effective to mitigate the influence of earthquake on structures and it is possible to increase the serviceability due to decrease the floor acceleration. facilities from their good states that is superior to non-isolated structure.

A Study on the Minimum Number of Rebound Number Test and Pulse Velocity Method for Estimating Compressive Strength of Concrete (콘크리트 압축강도 추정을 위한 반발도법과 초음파속도법의 최소시험횟수에 관한 연구)

  • Lee Mun-Hwan;Choi Chang-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.833-840
    • /
    • 2004
  • Among non-destructive tests for compressive strength, rebound number test and pulse velocity test are the most widely used methods. However, the non-destructive tests mostly used in Korea was developed by foreign country. Therefore, it is unreasonable to directly apply them to concrete structures in Korea. In accordance with the suggestion of Institute of Architecture in Japan for rebound number test, a compressive strength is calculated by the mean value of 20 hit points without being considered standard deviation. Furthermore, there is no regulation on the number of measurements required for measuring compressive strength by pulse velocity test. This study, therefore, reviewed the rebound number test and pulse velocity test by chi-square, and suggested the minimum number of each test. As a result, the minimum number that falls within range of reliability for rebound number test and pulse velocity test are 11 and 7, respectively. If abnormal values are processed as missing and test groups are assumed to be arrayed in cross by considering changes in quality of actual concrete structures, 20 times and 9 times are appropriate for rebound number test and pulse velocity test, respectively.

Internal pressures in buildings with a dominant opening and background porosity

  • Kim, P.Y.;Ginger, J.D.
    • Wind and Structures
    • /
    • v.16 no.1
    • /
    • pp.47-60
    • /
    • 2013
  • A dominant opening in a windward wall, which generates large internal pressures in a building, is a critical structural design criterion. The internal pressure fluctuations are a function of the dominant opening area size, internal volume size and external pressure at the opening. In addition, many buildings have background leakage, which can attenuate internal pressure fluctuations. This study examines internal pressure in buildings for a range of dominant opening areas, internal volume sizes and background porosities. The effects of background porosity are incorporated into the governing equation. The ratio of the background leakage area $A_L$ to dominant opening area $A_W$ is presented in a non-dimensional format through a parameter, ${\phi}_6-A_L/A_W$. Background porosity was found to attenuate the internal pressure fluctuations when ${\phi}_6$ is larger than 0.2. The dominant opening discharge coefficient, ${\kappa}$ was estimated to lie between 0.05 to 0.40 and the effective background porosity discharge coefficient ${\kappa}^{\prime}_L$, was estimated to be between 0.05 to 0.50.

Development of an integrated approach for Algerian building seismic damage assessment

  • Boukri, Mehdi;Farsi, Mohammed Naboussi;Mebarki, Ahmed;Belazougui, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.471-493
    • /
    • 2013
  • This paper presents a framework for seismic damage evaluation for Algerian buildings adapted from HAZUS approach (Hazard-United States). Capacity and fragility curves were adapted to fit the Algerian building typologies (Reinforced Concrete structures, Confined or Non-Confined Masonry, etc). For prediction purposes, it aims to estimate the damages and potential losses that may be generated by a given earthquake in a prone area or country. Its efficiency is validated by comparing the estimated and observed damages in Boumerd$\grave{e}$s city, in the aftermath of Boumerd$\grave{e}$s earthquake (Algeria: May $21^{st}$ 2003; $M_w$ = 6.8). For this purpose, observed damages reported for almost 3,700 buildings are compared to the theoretical predictions obtained under two distinct modelling of the seismic hazard. In one hand, the site response spectrum is built according to real accelerometric records obtained during the main shock. In the other hand, the effective Algerian seismic code response spectrum (RPA 99) in use by the time of the earthquake is considered; it required the prior fitting of Boumerd$\grave{e}$s site PGA (Peak Ground Acceleration) provided by Ambraseys' attenuation relationship.

Flexural behavior and resistance of uni-planar KK and X tubular joints

  • Chen, Yiyi;Wang, Wei
    • Steel and Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.123-140
    • /
    • 2003
  • The importance of the research on moment-resistant properties of unstiffened tubular joints and the research background are introduced. The performed experimental research on the bending rigidity and capacity of the joints is reported. The emphasis is put on the discussion of the flexural behavior of the joints including sets of geometrical parameters of the joints and several loading combinations. Procedures and results of loading tests on four full size joints in planar KK and X configuration are described in details at first. Mechanical models are proposed to analyze the joint specimens. Three-dimensional nonlinear FE models are established and verified with the experimental results. By comparing the experimental data with the results of the analysis, it is reported reasonable to carry out the structural analysis under the assumption that the joint is fully rigidly connected, and their bending capacities can assure the strength of the members connected under certain limitation. Furthermore, a parametric formula for inplane bengding rigidity of T and Y type tubular joints is proposed on the basis of FE calculation and regression analysis. Compared with test results, it is shown that the parametric formula developed in this paper has good applicability.