• Title/Summary/Keyword: Non-aeration/Aeration Rate

Search Result 22, Processing Time 0.027 seconds

A Study on The Effect of Hyperoxia on EKG Findings of Rabbits (과다산소조건이 가토의 심전도상에 미치는 영향에 관한 연구)

  • Lee, Soo-Jin;Song, Jae-Cheol;Park, Hung-Bae
    • Journal of Preventive Medicine and Public Health
    • /
    • v.25 no.1 s.37
    • /
    • pp.34-43
    • /
    • 1992
  • To investigate the effect of hyperoxia on EKG findings and to evaluate the applicability of EKG as noninvasive monitoring index of oxygen toxicity, 38 rabbits were continuously exposed to 6 different conditions-3 hyperbaric oxygenations (HBO-2.5, 3.5 and 5ATA, 100% $O_2$), normobaric oxygenation (NBO,100% $O_2$), hyperbaric aeration (HBA-5ATA, 21% $O_2$) and normobaric aeration (NBA, 21% $O_2$)-for 120 minutes and their EKG and time to dyspnea and convulsion were recorded. Dyspnea and death were observed in exposure conditions of HBO-3.5 and HBO-5 (Positive rate of dyspnea 10%, 100%, death : 10%, 25%, respectively) only, and convulsion in 4 oxygenation groups (NBO;20%, HBO-2.5;20%, HBO-3.5;20%, HBO-5;88%). Abnormal EKG findings included arrhythmia and ST-T changes and the incidences was increasing with doses(partial pressure of oxygen). In addition to EKG change, findings observed during exposure were dyspnea and convulsion in the order of appearance and when non specific ST-T change was accepted as positive(abnormal) finding, the frequency of abnormal EKG was statistically significant(p<0.01), but when it was excluded from positive results, the frequency of EKG change was not significant(p>0.05). These results suggest that the effect of hyperoxia on heart is myocardial ischemia and arrhythmia, that oxygenation more than 3.5ATA causes myocardial damage in 120 minutes exposure, and that EKG is valuable as monitoring index of oxygen toxicity.

  • PDF

Inference of Sequencing Batch Reactor Process using Oxidation Reduction Potential (ORP profile을 이용한 연속 회분식 반응기(Sequencing Batch Reactor)에서 무산소공정 추론)

  • Sim, Mun Yong;Bu, Gyeong Min;Im, Jeong Hun;U, Hye Jin;Kim, Chang Won
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.245-250
    • /
    • 2004
  • The SBR(Sequencing Batch Reactor) process is ideally suited to treat high loading wastewater due to its high dilution rate. SBR operates by a cycle of periods consisting of filling, reacting, settling, decanting and idling. The react phases such as aeration or non-aeration, organic oxidation, nitrification, denitrification and other bio-logical reactions can be achieved in a reactor. Although the whole reactions can be achieved in a SBR with time distributing, it is hard to manage the SBR as a normal condition without recognizing a present state. The present state can be observed with nutrient sensors such as ${NH_{4}}^{+}-N$, ${NO_{2}}^{-}-N$, ${NO_{3}}^{-}-N} and ${PO_{4}}^{ 3-}-P.$ However, there is still a disadvantage to use the nutrient sensors because of their high expense and inconvenience to manage. Therefore, it is very useful to use common on-line sensors such as DO, ORP and pH, which are less expensive and more convient. Moreover, the present states and unexpected changes of SBR might be predicted by using of them. This study was conducted to get basic materials for making an inference of SBR process from ORP(oxidation reduction potential) of synthetic wastewater. The profiles of ORP, DO, and pH were under normal nitrification and denitrification were obtained to compare abnormal condition. And also, nitrite and nitrate accumulation were investigated during reaction of SBR. The bending point on ORP profile was not entirely in the low COD/NOx ratio condition. In this case, NOx was not entirely removed, and minimum ORP value was presented over -300mV. Under suitable COD/NOx ratio which complete denitrification was achieved, ORP bending point was observed and minimum ORP value was under -300m V. Under high COD/NOx ratio, ORP bending point was not detected at the first subcycle because of the fast denitrification and minimum ORP value was under -300mV at the time.

Relationship between Energy Consumption and Operational Variables at Wastewater Treatment Plant (상관분석 및 의사결정나무분석을 통한 하수처리시설의 에너지 소비량과 운영인자의 관계 분석)

  • Jung, Yong-Jun;Kim, Ye-Jin
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.253-260
    • /
    • 2016
  • To reduce energy consumption in wastewater treatment plants (WWTPs), renewable energy applications such as small hydropower, solar energy, and wind energy are popular. However, it should be noticed that energy originated from operation of wastewater treatment process can be reduced through optimized operation based on analysis of factors affecting energy. In this research, the relationship to the various operational variables and influent factors was explored using correlation analysis and decision tree algorithm. Due to the non-linear characteristics of the process, it was difficult to find clear linear patterns through correlation analysis. However, decision tree algorithm showed its usefulness in uncovering hidden patterns that consume energy. As operational factors, influent flowrate, the amount of aeration, nitrate recycling pumping rate, and sludge wasting pumping rate were selected as important factors. For environmental factors associated with influent compositions and removal rate, BOD and T-N removal rate were selected as significant factors.

Simultaneous Nitrification and Denitrification using Submerged MBR packed with Granular Sulfur and Non-woven Fabric (부직포 및 황 충진 MBR을 이용한 포기조내 동시 질산화/탈질에 관한 연구)

  • Moon, Jin-Young;Hwang, Yong-Woo;Park, Ji-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.439-446
    • /
    • 2009
  • This study was performed to evaluate SND(simultaneous nitrification and denitrification)efficiency, nitrogen removal efficiency and filtration function of non-woven fabric by using submerging MBR packed with granular sulfur covered with non-woven fabric filter. Synthetic wastewater was used as influent wastewater. Concentration of $NH_4{^+}-N$ in influent was maintained about 40 mg/L and the experiment was performed in four phases according to the flow rate. Nitrogen loading rate divided four phases ranging from $0.04 kg\;NH_4{^+}-N/m^3-day$ to $0.16 kg\;NH_4{^+}-N/m^3-day$. As a result, the maximum $NH_4{^+}-N$ removal rate was accomplished at $0.142 kg\;NH_4{^+}-N/m^3-day$ in nitrogen loading of $0.147 kg\;NH_4{^+}-N/m^3-day$. Nitrification efficiency was higher than 95% in all phases. $NO_3{^-}-N$ loading rate was adjusted ranging from $0.22 kg\;NO_3{^-}-N/m^3-day$ to $0.89 kg\;NO_3{^-}-N/m^3-day$. The maximum $NO_3{^-}-N$ removal rate was accomplished up to $0.71 kg\;NO_3{^-}-N/m^3-day$ in $NO_3{^-}-N$ loading of $0.89 kg\;NO_3{^-}-N/m^3-day$. The maximum $NO_3{^-}-N$ removal efficiency was 95% in $NO_3{^-}-N$ loading of $0.22 kg\;NO_3{^-}-N/m^3-day$. T-N removal rate was 90% and concentration of T-N in effluent was 3.7 mg/L in T-N loading rate of $0.039 kg\;NO_3{^-}-N/m^3-day$. In this study, TMP in reactor with and without non-woven fabric filter were observed to define fouling of hollow-fiber membrane module. Reaching time to standard washing pressure(22 cm Hg) of two reactors were 29 days with non-woven fabric But the reactor without non-woven fabric reached standard washing pressure only after 4 days. Accordingly, non-woven fabric was demonstrated the superiority as a filtration ability. With high nitrogen removal rate and decreasing of fouling of membrane, MBR packed with granular sulfur covered with non-woven fabric filter submerging in activated sludge aeration tank can be used as an advanced treatment process.

Substrate Removal Condition in Activated Sludge Process of Wastewater from Acetaldehyde Manufacturing Plant (Acetaldehyde폐수의 활성오이법에 의한 기질제거조건)

  • 금영일;금두조
    • Journal of environmental and Sanitary engineering
    • /
    • v.8 no.1
    • /
    • pp.107-116
    • /
    • 1993
  • This study is conducted to investigate treatability by activated sludge process for wastewater from acetaldehyde manufacturing plant. The optimum hydraulic retention time in aeration tank for removal of high strength substrate were measured. The removal efficiency were checked out by hydraulic retention time : 35hr., 40hr. and 45hr., respectively. $COD_{Cr}$, like substances were removed in all hydraulic retention time zone directed for efficiency, but non-biodegradable substances were remained. $COD_{Cr}$ biomass loading was 0.81kg $COD_{Cr}/kgMLVSS$ . day at 35hr. of retention time, 0.34 kg$COD_{Cr}$/kg MLVSS . day at 40hr., and O.l9kg$COD_Cr$/kgMLVSS . day at 45hr. And the mean $COD_{Cr}$, removal efficiency was 65.5%, 81.6% and 83.0%, respectively. And also $COD_{Cr}$, volume loading was 1.01kg$COD_{Cr}/m^3$ day, 0.87kg$COD_{Cr}/m^3$ - day, and 0.79kg$COD_{Cr}/m^3{\cdot }$day, respectively. The basic design parameter obtained is as fallows. The value of Specific substrate removal rate coefficient (k), Yield coefficient(Y) and Decay coefficient($k_d$) was $0.0013day^{-1}$, $0.505kgMLVSS/kgCOD_{Cr}$ and $0.040day^{-1}$, respectively.

  • PDF

Application of Saccharomyces rouxii for the Production of Non-alcoholic Beer

  • Sohrabvandi, Sarah;Razavi, Seyed Hadi;Mousavi, Seyed Mohammad;Mortazavian, Amir;Rezaei, Karamathollah
    • Food Science and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.1132-1137
    • /
    • 2009
  • Successive application of Saccharomyces cerevisiae DSM 70424 and Saccharomyces rouxii DSM 2535 or DSM 2531 in the production of non-alcoholic beer was investigated. The aim of the study was to consider the impact of the 2 mentioned strains of S. rouxii on the reduction of alcohol content in wort fermented at 12 or $24^{\circ}C$ for 96 hr, applying periodic aeration. The 2 S. rouxii strains were added at the $48^{th}$ hr of fermentation after thermal inactivation of S. cerevisiae cells. The greatest alcohol decrease rate was observed for the treatment containing S. rouxii DSM 2535-fermented at $24^{\circ}C$ (from 1.56 to 0.36%). The concentration of acetaldehyde, diacetyl, and 2,3-pentandione, that have a key role in appearance of 'wort' and 'buttery' off flavors, were significantly lower in S. rouxii-containing treatments fermented at $24^{\circ}C$. S. rouxii-containing treatment fermented at $24^{\circ}C$ showed slightly lower overall flavor acceptability compared to S. cerevisiae-containing treatment fermented at the same temperature. Such score was improved for the products obtained at $12^{\circ}C$.

Effects of Mulching Materials on Physical Properties of Soil and Grain Yield of Sesame (멀칭 재료가 참깨재배토양의 생리성 및 종실수량에 미치는 영향)

  • Kim, Wook-Han;Hong, Byung-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.3
    • /
    • pp.260-269
    • /
    • 1986
  • This experiment was conducted to investigate the effect of mulching materials on the emergence rate, root dry weight and grain weight of sesame using variety Poong Nyun Ggae and also their effects on physical properties of soil, evapotranspiration and weed growth on the respective plots were studied. The effect of soil water holding capacity at mulching with polyethylene film and straw increased 5.4%, 2.8% to non-mulched plot respectively. The maximum soil temperature was raised up to 4$^{\circ}C$ by applying clear film and was dropped down to 7$^{\circ}C$ by straw. The minimum soil temperature was raised up to 2$^{\circ}C$ by clear film and was dropped down to 3$^{\circ}C$ by straw. In the early stage, the soil physical properties of clear film mulching were better than those of non mulching, and so was in emergence rate. In the late stage, soil strength was high at non mulching, and soil porosity, soil aeration and water infiltration rate were high at film and straw mulchings. Total root dry weight was great at clear film mulching, and root dry weight was concentrated mainly in the upper 10 cm of soil profile. The amount of weeds collected was the least at black film mulching. There were of little difference in evapotranspiration among treatments. The grain yield of sesame was increased to 57% by polyethylene film and 25% by straw mulching.

  • PDF

Effects of Soil, Water Level and Shading on Growth of Acorus calamus var. angustatus (토양과 수위 및 차광의 차이가 창포(Acorus calamus var. angustatus)의 생육에 미치는 영향)

  • Shin Seung-Hoon;Kim Min-Soo;Kim Yoon-Ha
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.5
    • /
    • pp.63-72
    • /
    • 2004
  • This study was carried out to analyze effects of soil, water level and shading on growth of sweet flag(Acorus calamus var. angustatus). Three types of soil were used, which included sandy, silty loam and paddy loam soil. Three levels of shading were applied in the experiment: no shading, 55% shading and 75% shading. The water levels were also adjusted to three levels in the experiment. The results are summarized as follows; 1. The cultivation of sweet flag in sandy soil with low water level resulted in decreased fresh weight compared to that at planting. This result indicates that the water level should be maintained higher than the soil surface for sweet flag growth in sandy soil. 2. 5 out of 72 sweet flags died in paddy loam soil. Water saturation of soil easily reduced paddy loam soil, and root growth of sweet flags in reduced soil condition were restricted, resulting in the dead plants. 3. The growth of sweet flag in paddy loam soil was worse than those in silty loam, indicating that reduced soil conditions in paddy loam is harmful to root growth. In planting sweet flags in paddy loam, improved soil aeration in paddy loam soil is necessary for good growth of sweet flag. 4. The maintaining of high water levels is better than that of low water levels in sweet flag cultivation. During winter, soil near the water surface froze and sweet flags in frozen soil were stressed physiologically. Maintaining high water levels prevents soil from being frozen which is good for the growth of sweet flags. 5. There was not significant difference in the growth of the sweet flag between non-shading and 55% shading. It thus appears that sweet flags can grow soundly under shading rate lower than 55%.

Effect of Benzyladenopurine Concentration in Soaking Solution on Growth of Mungbean Sprouts (침종액 중 BA 농도에 따른 숙주나물의 생장)

  • Kang Jin Ho;Ryu Yeong Seop;Yoon Soo Young;Jeon Seung Ho;Kim Seung Rack
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.49 no.6
    • /
    • pp.482-486
    • /
    • 2004
  • Benzyladenopurine (BA), a synthetic chemical commonly used for bean sprout culture, should be minimized for wellbeing foods or not be applied. The study was done to check the effect of different BA concentrations treated during 5 hour imbibition on growth and morphological characters of mungbean sprouts. The mungbean seeds of 3 cultivars (Keumseongnogdu, Owoolnogdu, and Zhong Lu 1) were imbibed for 5 hours in the solutions with different BA concentrations (0, 25, 50, 75, and 100 ppm) before 3 hour aeration. On the 6th day after culture, the mungbean sprouts were classified by 4 categories on the base of hypocotyl length; > 7cm, 4 to 7cm, < 4cm, and non-germination, and their morphological characters, fresh and dry weights were measured. Regardless of cultivars the composition rate of hypocotyls of longer than 7cm was decreased with increased BA concentration over 50 ppm while the reverse result was true in the rate of shorter than 4cm. In the rate of 4 to 7cm. cv. Owoolnogdu showed the highest rate in its 50 ppm concentration although cv. Keumseongnogdu and Zhong Lu 1 showed similar result to the above two rates. Formation rate and its number of lateral roots were largely changed around 50 ppm concentration but the roots was not formed in over its 75 ppm concentration. Hypocotyl and root lengths of all the cultivars were shortened with increased BA concentration. In the diameter of middle part of hypocotyl, 3 cultivars showed nearly the same responses as the rate of 4 to 7cm hypocotyls. Hypocotyl and total fresh weights per sprout were heavier in BA treated sprouts than in no treated ones but the weights of the former sprouts were not influenced by its different concentrations.

Control of Membrane Fouling in Submerged Membrane Bioreactor(MBR) using Air Scouring (침지형 생물 반응기 공정에서 플럭스 향상을 위한 공기 세척 효과에 관한 연구)

  • Shin, Dong-Hwan;Baek, Byung-Do;Chang, In-Soung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.948-954
    • /
    • 2008
  • Membrane bioreactor(MBR) processes have been widely applied to wastewater treatment for last decades due to its excellent capability of solid-liquid separation. However, membrane fouling was considered as a limiting factor in wide application of the MBR process. Excess aeration into membrane surface is a common way to control membrane fouling in most MBR. However, the excessively supplied air is easily dissipated in the reactor, which results in consuming energy and thus, it should be modified for effective control of membrane fouling. In this study, cylindrical tube was introduced to MBR in order to use the supplied air effectively. Membrane fibers were immersed into the cylindrical tube. This makes the supplied air non-dissipated in the reactor so that membrane fouling could be controlled economically. Two different air supplying method was employed and compared each other; nozzle and porous diffuser which were located just beneath the membrane module. Transmembrane pressure(TMP) was monitored as a function of airflow rate, flux, and ratio of the tube area and cross-sectioned area of membrane fibers(A$_m$/A$_t$). Flow rate of air and liquid was regulated to obtain slug flow in the cylindrical tube. With the same flow of air supply, nozzle was more effective for controlling membrane fouling than porous diffuser. Accumulation of sludge was observed in the tube with the nozzle, if the air was not suppled sufficiently. Reduction of membrane fouling was dependent upon the ratio, A$_m$/A$_t$. For diffuser, membrane fouling was minimized when A$_m$/A$_t$ was 0.27, but 0.55 for nozzle.