• Title/Summary/Keyword: Non-Point Source Reduction

Search Result 139, Processing Time 0.028 seconds

유기성 폐기물 간접부담금의 도입과 바이오가스 생산보조 정책의 일반균형효과 분석

  • Bae, Jeong-Hwan
    • Environmental and Resource Economics Review
    • /
    • v.21 no.1
    • /
    • pp.175-210
    • /
    • 2012
  • As London and post-Koyto protocols presumably affect emission of organic waste in Korea in 2012, appropriate treatment of organic waste becomes very important. Organic wastes are regarded as non-point pollutants. It has been criticized that direct emission charges on the emission of non-point pollutants are not effective due to the high uncertainty in the relationship between pollution sources and pollution levels. This study suggests indirect emission charges on production of livestocks or consumption on foods. Furthermore, it is assumed that revenue from the emission charges will be recycled to support biogas production. Biogas can be fueled to produce energy. In order to evaluate potential economic and environmental impacts of recycling the indirect emission charges on organic wastes, a static CGE model was developed. Simulation results of emission charges on the production of livestock show that livestock, agriculture, and food industry will confront relatively high burden while emission charges on consumption of food will affect more broadly and consumers will suffer more. Production charge on livestock sector will lead to higher reduction in GDP and total expenditure relative to the consumption charge. GHGs reduction effect was higher for the consumption charge relative to the production charge. Synthetically, consumption charge on food sector is more desirable as an alternative charge for the emission of organic wastes.

  • PDF

Analysis of runoff reduction and storage capacity in permeable pavement parking lot (투수성 주차장에서의 강우 유출저감 및 저류용량 분석)

  • Jung, Yongjun;Min, Kyungsok
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.296-302
    • /
    • 2017
  • Generally, a parking lot is constructed using asphalt or concrete. Such materials are impermeable, which means that a parking lot will directly release pollutants to any nearby water system during a rainfall event. An increased quantity of nonpoint source pollutants harms the ecohydrological system and causes further environmental damage leading to dysfunctional water circulation systems. Therefore, there is an urgent need for the design and application of Low Impact Development (LID) systems that allow more effective prevention of water circulation problems and management of nonpoint source pollution. This study aims to support such efforts by analyzing a permeable paver parking lot constructed using one of the LID techniques and comparing it to a conventional one in terms of the concentration of pollutants, nonpoint source pollution load and runoff rainfall lag effects during a rainfall event; it could serve as a reference for the construction of permeable paver parking lots in the future.

The Study on the Non-Point Pollutants Reduction Using Friendly Bank Protection Anaerobic/Aerobic Contact Filtration Zone (혐기/호기 접촉여과대를 이용한 자연형 하천호안공법의 비점오염 저감 특성 연구)

  • Chang, HyungJoon;Kim, SungDuk
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • It is an urgent issue to manage and reduce non-point pollution sources for improving the water quality of stream and lakes in rural areas. In this study, in order to reduce non-point pollution sources in rural area, Gabion mattresses was proposed to provide protection of riverbanks with anaerobic and aerobic area. The utilization of this was assessed by lab scale model test and pilot plant test. After filling the inside of the gabion mattresses with aggregate, the filtration zone under anaerobic and aerobic conditions was formed to treat the contaminants. In addition, vegetation was deposited on the surfae of the gabion to prevent the inflow of soil and to promote purification by the plant. COD and nitrogen content (T-N, $NH_4{^+}$, -N, $NO_3{^-}N$) were monitored in model and field tests. The lab scale model test showed removal efficiency of 17% of TCOD, 35% of SCOD, 14% of TN, 62% of $NH_4{^+}$, -N, and 33% of $NO_3{^-}$ N. Also, pilot plant test showed removal efficiency of 24% of TCOD, 29% of SCOD, 47% of TN, 50% of $NH_4{^+}-N$, 33% of $NO_3{^-}$, N and 29% of TP.

Effect of Surface Cover on the Reduction of NPS Pollution at a Vegetable Field (야채재배 밭에서 지표피복의 비점오염원 저감효과)

  • Shin, Minhwan;Jang, Jeongryeol;Won, Chulhee;Choi, Younghun;Shin, Jaeyoung;Lim, Kyoung Jae;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.3
    • /
    • pp.436-443
    • /
    • 2012
  • This research was focused on the effect of rice straw and rice straw mat on the reduction of upland field non-point source (NPS) pollution discharges. Six experimental plots of $5{\times}22m$ in size and 3% in slope prepared on gravelly sandy loam soil were treated with control, rice straw cover and rice straw mat cover. Radish in Spring growing seasons were cultivated. NPS pollution discharge was monitored and compared with respect to the treatments. The surface cover rate of rice straw and rice straw mat right after the treatments was 64.7% and 73.7%, respectively. Rainfall of the 16 monitored events ranged from 12.8 mm to 538.2 mm. Runoff coefficient of the events was 0.01~0.67 in control plot, 0~0.63 in rice straw plot and 0~0.45 in rice straw mat plot. The reduction of runoff compared to the control plot was 5.4~99.7% in rice straw plot and 32.9~100% in rice straw mat plot. The reduction of NPS pollution load was 52.0% for SS, 28.5% for T-N and 35.2% for T-P in rice straw plot and 79.8% for SS, 68.3% for T-N and 53.3% for T-P in rice straw mat plot. This research revealed that rice straw mat cover on the soil surface could not only increase the crop yield and farmer's income but also reduce the NPS pollution loads significantly.

A study of the operational plans of non-point treatment facility depending on non-point source reduction scenario (비점오염원 저감시나리오에 따른 비점처리시설의 운영방안 연구)

  • Shin, Hyun-Suk;Jang, Jong-Kyung;Shon, Tae-Seok;Kim, Hong-Tae;Son, Jeong-Hwa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.2056-2060
    • /
    • 2008
  • 도시하천의 오염원은 점오염원과 비점오염원으로 분류되어 점오염원은 하천유입 전에 차집하여 하수처리장에서 처리하는 체계가 갖추어져 있으나 전체 오염부하량의 $30%{\sim}40%$ (BOD기준)로 추정되는 비점오염원은 차집되거나 처리되지 않고 그대로 하천에 유입되고 있는 실정이다. 비점오염원은 불특정 오염원으로서 지표의 오염물질이나 합류식 하수관거의 하수가 강우에 의해 발생한 유출과 함께 하천으로 유입(CSOs)되어 우천 시에 하천을 오염시키는 가장 큰 원인이 되고 있으므로 이의 저감하기 위한 효과적인 비점오염원 관리방안이 요구된다. 본 연구에서는 대상유역인 부산광역시에 위치한 온천천 유역을 주요토구별 43개 유역으로 구분하여 SWMM(Storm Water Management Model)을 구축하였고 개별 토구에 Divider를 설치하여 일정 차집량을 초과하는 유량은 처리장으로 유입되는 것으로 모의하였다. 장치형 처리시설은 농도에 따라 일정효율을 가지고 처리시설의 임계유량을 초과하는 경우는 미처리되어 방류되는 것으로 가정하였으며 처리장으로 차집된 유량도 처리장의 시간최대 유량을 초과하는 유량은 간이처리 후 방류되는 것으로 가정하여 시나리오에 따라 모의하였다. 각 토구별로 처리시설을 설치한 경우의 처리효율과 차집비율을 증가시켜 처리장에서 일괄처리하는 경우의 처리효율을 차집비율별로 검토하여 최적의 차집비율을 검토하였다. 또한 오염원 관리측면의 면적당 축적부하량 저감과 발생량 관리측면의 토구의 차집비율 증가 및 토구에 대한 처리시설 설치비율에 따른 효율을 검토하여 처리효율, 오염원 저감 및 차집비율에 대한 상관관계를 도출하였다.

  • PDF

Evaluation of Nonpoint Pollutant Management Effect by Application of Organic Soil Ameliorant Based on Renewable Resources in Urban Watershed (도시유역에서 재생자원기반 유기성 토량개량제 적용에 따른 비점오염물질 관리 효과 평가)

  • Yoonkyung Park;Chang Hyuk Ahn
    • Journal of Korean Society on Water Environment
    • /
    • v.40 no.3
    • /
    • pp.131-139
    • /
    • 2024
  • This study investigated the chemical properties of Organic Soil Amendments (OSAs) made from organic waste. It also assessed the effectiveness of using these OSAs in the soil layer of Green Infrastructure (GI) to reduce stormwater runoff and non-point source pollutants. The goal was to improve the national environmental value through resource recycling and contribute to the circular economy transformation and carbon neutrality of urban GI. The OSAs used in this study consisted of spent coffee grounds and food waste compost. They were found to be nutrient-rich and stable as artificial soils, indicating their potential use in the soil layer of GI facilities. Applying OSAs to bio-retention cells and permeable pavement resulted in a reduction of approximately 11-17% in stormwater runoff and a decrease of about 16-18% in Total Phosphorus (TP) discharge in the target area. Increasing the proportion of food waste compost in the OSAs had a positive impact on reducing stormwater runoff and pollutant emissions. This study highlights the importance of utilizing recycled resources and can serve as a foundation for future research, such as establishing parameters for assessing the effectiveness of GI facilities through experiments. To enable more accurate analysis, it is recommended to conduct studies that consider both the chemical and biological aspects of substance transfer in OSAs.

The Planning Process and Simulation for Low Impact Development(LID) in Waterfront Area (수변지역에서의 저영향개발기법(LID) 적용을 위한 계획과정 도출 및 모의효과)

  • Kim, Dong Hyun;Choi, Hee-Sun
    • Journal of Environmental Policy
    • /
    • v.12 no.1
    • /
    • pp.37-58
    • /
    • 2013
  • In recently, the low impact development(LID) is discussed at various fields being related to urban stormwater, non-point source pollution, and quality of life. It is understood as an integrated development tool to induce sustainable development with various value-social, economic, and aesthetic. As concerning the development of waterfront area, the low impact development is interested in environmental planning. But the planning process and factors are not considered in precedent research. This study has two purposes. The one is to understand the planning process and factors of low impact development from literature review. The other is to apply the planning factors using case study and to know the effect of low impact development as the simulation plan. The simulation plan is based on some landuse planning. It is divided into the setting the region for environmental protection and the function of public facilities, spatial planning for enlarging permeable area, and spatial planning for circulation of water. The simulation model uses the LIDMOD2. The 14 planning factors of low impact development is applied to case region. And the effect is about 7~10 percent in reduction of nonpoint source pollution and surface runoff.

  • PDF

A Study on Selection Method of Management Watershed for Total Pollution Load Control at Tributary (지류총량관리를 위한 관리유역 선정 방법에 관한 연구)

  • Hwang, Ha Sun;Lee, Sung Jun;Ryu, Jichul;Park, Ji Hyung;Kim, Yong Seok;Ahn, Ki Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.528-536
    • /
    • 2016
  • The purpose of Total Pollution Load Control at Tributary is to obtain maximum improvement effect of water quality through finding the most impaired section of water-body and establishing the proper control measure of pollutant load. This study was implemented to determine the optimal management of reach, period, condition, watershed, and pollution source and propose appropriate reduction practices using the Load duration curve (LDC) and field monitoring data. With the data of measurement, LDC analysis shows that the most impaired condition is reach V (G4~G5), E group (flow exceedance percentile 90~100%) and winter season. For this reason, winter season and low flow condition should be preferentially considered to restore water quality. The result of pollution analysis for the priority reach and period shows that agricultural nonpoint source loads from onion and garlic culture are most polluting. Therefore, it is concluded that agricultural reuse of surface effluent (storm-water runoff with non-point sources) and low impact farming that includes reducing fertilization and controlling the height of drainage outlet are efficient water quality management for this study watershed.

Predicting the Effects of Agriculture Non-point Sources Best Management Practices (BMPs) on the Stream Water Quality using HSPF (HSPF를 이용한 농업비점오염원 최적관리방안에 따른 수질개선효과 예측)

  • Kyoung-Seok Lee;Dong Hoon Lee;Youngmi Ahn;Joo-Hyon Kang
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.99-110
    • /
    • 2023
  • Non-point source (NP) pollutants in an agricultural landuse are discharged from a large area compared to those in other land uses, and thus effective source control measures are needed. To develop appropriate control measures, it is necessary to quantify discharge load of each source and evaluate the degree of water quality improvement by implementing different options of the control measures. This study used Hydrological Simulation Program-FORTRAN (HSPF) to quantify pollutant discharge loads from different sources and effects of different control measures on water quality improvements, thereby supporting decision making in developing appropirate pollutant control strategies. The study area is the Gyeseong river watershed in Changnyeong county, Gyeongsangnam-do, with agricultural areas occupying the largest proportion (26.13%) of the total area except for the forest area. The main pollutant sources include chemical and liquid fertilizers for agricultural activities, and manure produced from small scale livestock facilities and applied to agriculture lands or stacked near the facilities. Source loads of chemical fertilizers, liquid fertilizers and livestock manure of small scale livestock facilities, and point sources such as municipal wastewater treatment plants (WWTPs), community WWTPs, private sewage treament plants were considered in the HSPF model setup. Especially, NITR and PHOS modules were used to simulate detailed fate and transport processes including vegitation uptake, nutrient deposition, adsorption/desorption, and loss by deep percolation. The HSPF model was calibrated and validated based on the observed data from 2015 to 2020 at the outlet of the watershed. The calibrated model showed reasonably good performance in simulating the flow and water quality. Five Pollutants control scenarios were established from three sectors: agriculture pollution management (drainge outlet control, and replacement of controlled release fertilizers), livestock pollution management (liquid fertilizer reduction, and 'manure management of small scale livestock facilities) and private STP management. Each pollutant control measure was further divided into short-term, mid-term, and long-term scenarios based on the potential achievement period. The simulation results showed that the most effective control measure is the replacement of controlled release fertilizers followed by the drainge outlet control and the manure management of small scale livestock facilities. Furthermore, the simulation showed that application of all the control measures in the entire watershed can decrease the annual TN and TP loads at the outlet by 40.6% and 41.1%, respectively, and the annual average concentrations of TN and TP at the outlet by 35.1% and 29.2%, respectively. This study supports decision makers in priotizing different pollutant control measures based on their predicted performance on the water quality improvements in an agriculturally dominated watershed.

Evaluation of SRI Water Management on the Reduction of Irrigation Supply and NPS Pollution in Paddies (SRI 물관리 방법이 논의 관개용수량과 비점오염원 저감에 미치는 영향)

  • Seo, Jiyeon;Park, Baekyung;Park, Woonji;Yoon, Kwangsik;Choi, Dongho;Kim, Yongseok;Ryu, Jichul;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • Monitored data (rainfall runoff and water quality) from 4 different paddy sites over 3 years were compared to analyze the effect of irrigation water management on irrigation supply and rainfall runoff quality in Korea. The system of rice intensification water management was adopted at one site (SRI) while the conventional water management method was used for rice culture at the other three sites (CT, SD and HD). The soil texture at SRI, CT and SD was sandy loam while that at HD was silt loam. The average reduction of irrigation supply at SRI compared with CT, SD and HD during the 3 years studied was 49%, 51% and 55%, respectively. The average event mean concentration (EMC) at SRI compared with that at CT, SD and HD was decreased by 35% (BOD), 44% (COD), 47% (SS), 19% (TN) and 38% (TP). The correlation between rainfall runoff and the measured non-point source (NPS) pollutants was very good in general. The comparison revealed that SRI water management significantly reduced both irrigation supply and EMC in rainfall runoff. Paddy NPS pollution was closely related to factors that induce runoff such as rainfall and irrigation supply. It was concluded that SRI management could be an effective and practical option to cope with both water shortage due to climate change and water quality improvement in rural watersheds. However, further studies are recommended in large irrigation districts for use in the development and implementation of NPS pollution policies since the data was collected from field sized paddies.