• Title/Summary/Keyword: Non-Point Source (NPS)

Search Result 104, Processing Time 0.025 seconds

Nonpoint Pollutants Sources Characteristics of Initial Surface Runoff on the Land Use Types (토지이용별에 따른 초기강우 유출량의 비점오염물 특성 분석)

  • Choi, Yun-Yeong;Jung, Se-Young;Choi, Jeong-Woo
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.417-426
    • /
    • 2011
  • This study was conducted to investigate runoff characteristics of non-point pollutants source at the urban and rural zones in sangju area. The monitoring was conducted with seven events for ten months and Event mean Concentration(EMC) and First Flush Effect(FFE) of SS and BOD were calculated on the result of the water quality parameters. During rainfall event, the peak concentrations of SS and BOD were observed after 3~4 hours of rainfall in rural areas. Whereas, the peak concentrations occurred within 1~2 hours after rainfall and then the highest concentration of NPS pollutants sharply decreased, showing strong first flush effect in urban areas. The cumulative load curves for NPS pollutants showed above the $45^{\circ}$ straight line, indicating that fist flush effect occurred in urban areas. The mean SS EMC values of rural areas ranged from 0.9~3.3mg/L, it was higher value when compare to urban areas. While the mean BOD values of urban areas were shown the highest values.

The Application of Nature-Based Technologies for Addressing Urban Environmental Problems (도시 환경 문제를 해결하기 위한 자연 기반해법의 적용)

  • Haque, Md Tashdedul;Reyes, Nash Jett DG.;Lee, Jung-min;Guerra, Heidi B.;Jeon, Minsu;Choi, Hyeseon;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.24 no.4
    • /
    • pp.367-376
    • /
    • 2022
  • LID technologies are capable of mitigating the negative impacts of non-point source (NPS) pollution generated in different land uses. Apart from the increase in point and non-point pollutant generation, highly developed and paved areas generally affect microclimate conditions. This study evaluated both the efficiency of Low Impact Development (LID) facilities in treating NPS pollutant loads as well as the unit pollutant loads (UPL) generated in various urban features (such as parking lots and highways). This investigation also looked at how LID technology helped to alleviate Urban Heat Island (UHI) conditions. As compared to the typical unit pollutant loads in South Korea, the unit pollutant loads at Kongju National University were relatively low, because of no classes, limited vehicular transmission, and low anthropogenic activities during vacation. After receiving treatment from the LID facilities, the effluent pollutant loads were significantly decreased. The sedimentation in filtration mechanisms considerably reduced the pollutant fractions in the influent. Additionally, it was shown that LID facilities' mean surface temperatures are up to 7.2℃ lower than the nearby paved environment, demonstrating the LID systems reducing the UHI impact on an urban area.

Water Quality Monitoring by Snowmelt in Songcheon, Doam Lake Watershed (도암호 유역의 융설에 의한 수질 변화 모니터링)

  • Kwon, Hyeokjoon;Hong, Dahye;Byeon, Sangdon;Lim, Kyoungjae;Kim, Jonggun;Nam, Changdong;Hong, Eunmi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.3
    • /
    • pp.87-95
    • /
    • 2021
  • The Doam Lake Watershed is one of Gangwon-do's non-point source management areas. This area has a lot of snowfall in winter, and it is expected that there will be a lot of soil erosion in early spring due to snow melting. In this study, snow melting was monitored in the Doam Lake watershed from February to 3, 2020. It was conducted to analyze the water quality changes by calculating the concentration of non-point source pollution caused by snowmelt, and to compare the concentration of water quality during snowmelt event with rainfall and non-rainfall event. As a result of water quality analysis, Event Mean Concentration (EMC) at the first monitoring was SS 33.9 mg/L, TP 0.13 mg/L, TN 4.33 mg/L, BOD 1.35 mg/L, TOC 1.84 mg/L. At the second monitoring, EMC were SS 81.3 mg/L, TP 0.15 mg/L, TN 3.12 mg/L, BOD 1.32 mg/L, TOC 3.46 mg/L. In parameter except SS, it showed good water quality. It is necessary to establish management measures through continuous monitoring.

Runoff Characteristics Comparison of Nonpoint Source Pollution for Two Adjacent Stream Watersheds using SWAT Model (SWAT 모형을 이용한 두 인접 하천유역간의 비점오염 유출특성 비교연구)

  • Jung, Chung-Gil;Joh, Hyung-Kyung;Park, Jong-Yoon;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.91-101
    • /
    • 2012
  • This study is to assess the runoff characteristics of nonpoint source pollution loads for Jecheon and Jangpyeong stream watersheds located in the upstream of Chungju lake. The SWAT (Soil and Water Assessment Tool), a physically based distributed hydrological model was calibrated and verified using 5 years (2006 to 2010) streamflow and water quality data. The Nash-Sutcliffe model efficiency for streamflow was 0.60~0.92 and the determination coefficients for sediment, Total Nitrogen (T-N), and Total Phosphorous (T-P) were 0.53~0.71, 0.51~0.91 and 0.38~0.85 respectively. The results showed that the Sediment, T-N, and T-P of Jangpyeong stream were 40.0~60.9 %, 34.8~64.1 % and 76.5~83.9 % higher than Jecheon stream watershed during wet days. The results evaluated high NPS loads at Jangpyeong stream because the percentage of urban and upland crop cultivation area Jangpyeong stream watershed was higher than Jecheon stream watershed.

The NPS Analysis and CSO Management Based on SWMM for Oncheon Basin (SWMM 모형을 이용한 비점오염 분석 및 CSO 관리방안 연구 - 부산시 온천천 유역 대상 -)

  • Shin, Hyun Suk;Son, Jeong Hwa;Jang, Jong Kyung;Shon, Tae Seok;Kang, Dookee;Cho, Dukjoon
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.2
    • /
    • pp.268-280
    • /
    • 2009
  • Oncheon basin which are located in Busan is divided into 43 basin on the basis of main pipe, constructed with Storm Water Management Model (SWMM). Occurrence situation for Outflow and pollutant loads by long-term continuous rainfall is examined for treatment district and river analysis point of Oncheon basin and a reduction vs effectiveness table for effective CSOs managements is made for each of treatment districts according to each of managements. In case that treatment equipment is located at the discharge point of CSO, treatment efficiency is analysed. It is supposed that treatment equipment have an efficiency on the basis of a concentration and runoff discharge over a critical flow is discharged with it untreated and treating runoff discharge with treatment equipment at each of runoff discharge points and treating it gathered at sewage treatment plant (STP) through trunk sewer is compared for a relative treatment efficiency.

Development of Small HSSF Constructed Wetland for Urban Green space (도시내 녹지공간 조성을 위한 소규모 HSSF 인공습지 개발)

  • Lee, Jeong-Young;Kang, Chang-Guk;Gorme, Joan B.;Kim, Soon-Seok;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.199-208
    • /
    • 2011
  • Scarcity of water worldwide, increasing greenhouse gas emissions, increased energy consumption due to the Earth is threatened. Existing in the process of urban planning and development of forests, rivers and other natural ecosystems have been destroyed and that there was increased impervious pavement. Impervious pavement increase water circulation system to destroy the natural and urban water retention, infiltration and decreased evaporation. Nonpoint source pollution(NPS) occurs when rainfall impervious pavement and appeal directly to the river water inflow is adversely impacts of the situation. In this study, rainfall occurs impervious pavement NPS pollution reduction and temperature increase due to the increase in urban areas, and to solve heat island phenomenon is to develop small HSSF constructed wetland technology. The small HSSF constructed wetland sedimentation, filtration, adsorption, absorption by vegetation, including such mechanisms. Techniques for verification of the pilot-scale test was conducted. In the future domestic urban heat island phenomenon and restore the natural water cycle for the facilities will be used as a basis to develop.

Improvement of Stream Water Quality by Applying Best Management Practices to Chungjudam Watershed using SWAT Model (SWAT 모형을 이용한 최적관리기법 적용에 따른 충주댐 유역의 하천수질 개선연구)

  • Yu, Yung-Seok;Park, Jong-Yoon;Shin, Hyung-Jin;Kim, Saet-Byul;Kim, Seong-Joon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.55-62
    • /
    • 2012
  • This study is to assess the reduction of nonpoint source pollution by applying Best Management Practice (BMP) in Chungju-dam watershed (6,585.1 $km^2$) using Soil and Water Assessment Tool (SWAT). The model was calibrated using 3 years (1998-2000) daily streamflow at 3 locations and monthly water quality of sediment (SS), total nitrogen (T-N) and total phosphorus (T-P) data at 2 locations and validated for another 3 years (2001-2003) data. The 5 BMPs of streambank stabilization, porous gully plugs, recharge structures, terrace, and contour farming were applied to stream and area with the specific criteria of previous researches. Through the parameter sensitivity analysis, the farming practice P-factor and Manning's roughness of stream were sensitive. Overall, the NPS reduction effect was high for streambank stabilization, terrace, and contour farming. At the watershed outlet, the SS, T-P, and T-N were reduced by 64.4 %, 62.8 % and 17.6 % respectively.

Loading Characteristics of Non-Point Source Pollutants by Rainfall - Case Study with Cherry Tree Plot - (강우시 비점오염원의 오염부하 특성 - 벚나무 재배지를 대상으로 -)

  • Kang, Mee-A;Choi, Byoung-Woo;Yu, Jae-Jeong
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.401-407
    • /
    • 2010
  • This study was carried out to produce the characteristics of pollutant loads caused by a cherry tree plot as a nonpoint sources(NPS) unit in agricultural areas. The relationship between rainfall and runoff didn't show a good coefficient with 0.5. Despite precipitation amount was less than 20 mm, runoff occurred with $0.5\;m^3$ because of high rainfall intensity of 8.8 mm/hr. In contrast, runoff was not occurred when precipitation amount was 47.4 mm in one case. In that case the primal effect on runoff was not precipitation amount. Correlation between load of pollutants such as BOD, COD, TN and TP and runoff' volumes showed significantly positive values which were more than r = 0.92 for all pollutants except SS(r = 0.71). SS could be a proper factor for estimating pollutant loads of BOD, COD, TN and TP because of a high correlation more than r = 0.73 between SS load and pollutant loads of BOD, COD, TN and TP. Both Organics and nutrient pollutants could be reduced if we control SS in runoff. The highest concentration of TN was detected in the event which was affected by fertilization activities directly. Therefore fertilization must be considered as a function of impact parameters on TN load in agricultural areas.

Runoff Characteristics and Relationship between Non-point Source Pollutants from Road (국도에서 발생하는 비점오염물질 유출특성 및 상관성)

  • Son, Hyun-Geun;Lee, So-Young;Lee, Eun-Ju;Kim, Lee-Hyung
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.59-64
    • /
    • 2008
  • The urban is possessing of various landuses such as commercial, industrial, residential and official areas. All of these landuses is including the paved areas that are roads and parking lots. The NPS (nonpoint sources) pollutants are generally originated from pavement areas in urban by human activities. Especially the roads are stormwater intensive landuses because of high vehicle activities and high imperviousness. The main NPS pollutants from roads are particulates and metals from vehicles and pavements. The Korea MOE (Ministry of Environment) is developing the NPS control program to reduce the NPS pollutants from the basins. However, it is not easy to control the NPS because it has high uncertainty by characteristics of rainfalls and watersheds. Therefore, this research was conducted on characterizing the runoff and providing mean EMC from roads. The monitoring were performed for total 16 rainfall events from a road in Youngin City since 2006. The results show that the TSS is highly correlated with other pollutant parameters. The statistical regression models using TSS EMC have been developed to easily determine the EMC of other pollutant parameters.

Selection of Appropiate Plant Species of VFS (Vegetative Filter Strip) for Reducing NPS Pollution of Uplands (밭 비점오염저감을 위한 초생대 적정 초종 선정)

  • Choi, Kyung-Sook;Jang, Jeong-Ryeol
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.973-983
    • /
    • 2014
  • This study focused on the selection of appropriate plant species of VFS (vegetative fiter strips) and the assessment of VFS effects for reducing NPS (non-point source) pollution from uplands. The experimental field was constructed with 1 control and 6 treated plots in the upland area of $1,500m^2$ with 5% slope which is located in Gunwi-gun, Gyeongbuk province. Six vegetation including Chufa, Common crabgrass, Barnyard grass, Turf grass, Tall fescue, Kenturky bluegrass, were applied to install VFS systems during the study period from June 2011 to Dec. 2012. The results of this study showed that 6.1~77.8% in runoff and 15.6~90.3% in TS, 49.9~96.6% in T-P, and 6.7~91.1% in T-N were reduced from the VFS treated plots. Generally high reduction effects were observed from TS, T-P, T-N, and SS, while BOD, TOC, and $NO_3^-$ showed low reductions. The best vegetation type was Turf grass showing higher reduction effects of NPS pollutions and having relatively easier maintenance efforts compared to other vegetations selected in this study. Based on these results, VFS technique found to be an effective management practice for reducing agricultural NPS pollutions in Korean upland conditions. Further study needs to be performed through various field experiments with long term monitoring in order to develop a design manual of VFS system for practical applications.