• Title/Summary/Keyword: Non-Parametric Method

검색결과 416건 처리시간 0.926초

Vibration Evaluation of Non-linear System under Random Excitations by Probabilistic Method (불규칙 가진을 받는 비선형계의 확률론적 진동평가)

  • Lee Sin-Young
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.113-114
    • /
    • 2006
  • Vibration of a non-linear system under random excitations was evaluated by probabilistic methods. The non-linear characteristic terms of a system structure were quasi-linearized and excitation terms were remained as they were. An analytical method where the square mean of error was minimized was used. An alternative method was an energy method where the damping energy and restoring energy of the linearized system were equalized to those of the original non-linear system. The numerical results were compared with those obtained by Monte Carlo simulation. The comparison showed the results obtained by Monte Carlo simulation located between those by the analytical method and those by the energy method.

  • PDF

A methodology to quantify effects of constitutive equations on safety analysis using integral effect test data

  • ChoHwan Oh;Jeong Ik Lee
    • Nuclear Engineering and Technology
    • /
    • 제56권8호
    • /
    • pp.2999-3029
    • /
    • 2024
  • To improve the predictive capability of a nuclear thermal hydraulic safety analysis code by developing a better constitutive equation for individual phenomenon has been the general research direction until now. This paper proposes a new method to directly use complex experimental data obtained from integral effect test (IET) to improve constitutive models holistically and simultaneously. The method relies on the sensitivity of a simulation result of IET data to the multiple constitutive equations utilized during the simulation, and the sensitivity of individual model determines the direction of modification for the constitutive model. To develop a robust and generalized method, a clustering algorithm using an artificial neural network, sample space size determination using non-parametric statistics, and sampling method of Latin hypercube sampling are used in a combined manner. The value of the proposed methodology is demonstrated by applying the method to the ATLAS DSP-05 IET experiment. A sensitivity of each observation parameter to the constitutive models is analyzed. The new methodology suggested in the study can be used to improve the code prediction results of complex IET data by identifying the direction for constitutive equations to be modified.

Logistic Regression Method in Interval-Censored Data

  • Yun, Eun-Young;Kim, Jin-Mi;Ki, Choong-Rak
    • The Korean Journal of Applied Statistics
    • /
    • 제24권5호
    • /
    • pp.871-881
    • /
    • 2011
  • In this paper we propose a logistic regression method to estimate the survival function and the median survival time in interval-censored data. The proposed method is motivated by the data augmentation technique with no sacrifice in augmenting data. In addition, we develop a cross validation criterion to determine the size of data augmentation. We compare the proposed estimator with other existing methods such as the parametric method, the single point imputation method, and the nonparametric maximum likelihood estimator through extensive numerical studies to show that the proposed estimator performs better than others in the sense of the mean squared error. An illustrative example based on a real data set is given.

Double-tuned Filter Design For HVDC System (HVDC System 적용 Double-tuned 필터의 설계 방법 연구)

  • Lee, Hee-Jin;Nam, Tae-Sik;Son, Gum-Tae;Park, Jung-Wook;Chung, Yong-Ho;Lee, Uk-Hwa;Baek, Seung-Taek;Hur, Kyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • 제61권9호
    • /
    • pp.1232-1241
    • /
    • 2012
  • The ac side current of an high voltage direct current (HVDC) converter is characterized by highly non-sinusoidal waveform. If the harmonic current is allowed to flow in the connected ac system, it may cause unacceptable levels of distortion. Therefore, ac side filters are required as part of the total HVDC converter station, in order to reduce the harmonic distortion of the ac side current and voltage to acceptably low levels. The ac side filters are also employed to compensate network requested reactive power because HVDC converters also consume substantial reactive power. Among different types of filters, double-tuned filters have been widely utilized for HVDC system. This paper presents two design methods of double-tuned filter; equivalent method and parametric method. Using a parametric method, in particular the paper proposes a new design algorithm for a realistic system. Finally, the performance of the design algorithm is evaluated for a 80kV HVDC system in Jeju island with PSCAD/EMTDC program. The results cleary demonstrate the effectiveness of proposed design method in harmonics elimination and steady-state stability.

Time delay estimation by iterative Wiener filter based recursive total least squares algorithm (반복형 위너 필터 방법에 기반한 재귀적 완전 최소 제곱 방법을 사용한 시간 지연 추정 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • 제40권5호
    • /
    • pp.452-459
    • /
    • 2021
  • Estimating the mutual time delay between two acoustic sensors is used in various fields such as tracking and estimating the location of a target in room acoustics and sonar. In the time delay estimation methods, there are a non-parametric method, such as Generalized Cross Correlation (GCC), and a parametric method based on system identification. In this paper, we propose a time delay estimation method based on the parametric method. In particular, we propose a method that considers the noise in each receiving acoustic sensor. Simulation confirms that the proposed algorithm is superior to the existing generalized cross-correlation and adaptive eigenvalue analysis methods in white noise and reverberation environments.

Frequency Analysis Using Bootstrap Method and SIR Algorithm for Prevention of Natural Disasters (풍수해 대응을 위한 Bootstrap방법과 SIR알고리즘 빈도해석 적용)

  • Kim, Yonsoo;Kim, Taegyun;Kim, Hung Soo;Noh, Huisung;Jang, Daewon
    • Journal of Wetlands Research
    • /
    • 제20권2호
    • /
    • pp.105-115
    • /
    • 2018
  • The frequency analysis of hydrometeorological data is one of the most important factors in response to natural disaster damage, and design standards for a disaster prevention facilities. In case of frequency analysis of hydrometeorological data, it assumes that observation data have statistical stationarity, and a parametric method considering the parameter of probability distribution is applied. For a parametric method, it is necessary to sufficiently collect reliable data; however, snowfall observations are needed to compensate for insufficient data in Korea, because of reducing the number of days for snowfall observations and mean maximum daily snowfall depth due to climate change. In this study, we conducted the frequency analysis for snowfall using the Bootstrap method and SIR algorithm which are the resampling methods that can overcome the problems of insufficient data. For the 58 meteorological stations distributed evenly in Korea, the probability of snowfall depth was estimated by non-parametric frequency analysis using the maximum daily snowfall depth data. The results of frequency based snowfall depth show that most stations representing the rate of change were found to be consistent in both parametric and non-parametric frequency analysis. According to the results, observed data and Bootstrap method showed a difference of -19.2% to 3.9%, and the Bootstrap method and SIR(Sampling Importance Resampling) algorithm showed a difference of -7.7 to 137.8%. This study shows that the resampling methods can do the frequency analysis of the snowfall depth that has insufficient observed samples, which can be applied to interpretation of other natural disasters such as summer typhoons with seasonal characteristics.

Comparison and Evaluation of Performance for Standard Control Limits and Bootstrap Percentile Control Limits in $\bar{x}$ Control Chart ($\bar{x}$ 관리도의 표준관리한계와 부트스트랩 백분률 관리한계의 수행도 비교평가)

  • 송서일;이만웅
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • 제22권52호
    • /
    • pp.347-354
    • /
    • 1999
  • Statistical Process Control(SPC) which uses control charts is widely used to inspect and improve manufacturing process as a effective method. A parametric method is the most common in statistical process control. Shewhart chart was made under the assumption that measurements are independent and normal distribution. In practice, this assumption is often excluded, for example, in case of (equation omitted) chart, when the subgroup sample is small or correlation, it happens that measured data have bias or rejection of the normality test. A bootstrap method can be used in such a situation, which is calculated by resampling procedure without pre-distribution assumption. In this study, applying bootstrap percentile method to (equation omitted) chart, it is compared and evaluated standard process control limit with bootstrap percentile control limit. Also, under the normal and non-normal distributions, where parameter is 0.5, using computer simulation, it is compared standard parametric with bootstrap method which is used to decide process control limits in process quality.

  • PDF

Reference Intervals from Hospital-Based Data for Hematologic and Serum Chemistry Values in Dogs (병원자료에 근거한 혈액 및 혈액화학 검사항목의 참고구간 설정)

  • Kwon, Young-Wook;Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • 제27권1호
    • /
    • pp.66-70
    • /
    • 2010
  • Reference interval is critical for interpreting laboratory results, monitoring response to therapy and predicting the prognosis of the patients in clinical settings. The aim of the present study was to update established reference intervals for routine hematologic and serum chemistry values for a population of clinically healthy dogs (range, 1-8 years) seen in an animal hospital. Blood was obtained by venipuncture while animals were physically restrained, and samples were analyzed for 9 chemistries on MS9-5H (Melot Schloesing Lab, France) and 6 hematology on Vet Test 8008 (IDEXX, USA). Data from 105 dogs (52 males and 53 females) for hematology and 113 dogs (37 males and 76 females) for chemistry were used to determine reference intervals using the parametric, nonparametric and bootstrap methods. Prior to analysis, all parameters were tested for normal distribution using Anderson-Darling criterion. Of the 9 biochemical analytes, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, creatinine, total protein, and glucose concentrations did not fit normal distribution for both original and transformed data. All but eosinophil count satisfied normal distribution for either original or transformed data. Parametric method can be used for original cholesterol concentrations, RBC, WBC, and neutrophil counts. This technique can also be used for power-transformed values of blood urea nitrogen concentrations and for logarithm of lymphocyte and monocyte counts. Non-parametric or bootstrap method was the preferred choice for the remaining 7 biochemical parameters and eosinophil count as they did not follow normal distributions. All three statistical techniques performed in similar reference intervals. When establishing reference intervals for clinical laboratory data, it is essential to assess the distribution of the original data to increase the accuracy of the interval, and non-parametric or bootstrap methods are of alternative for the data that do not fit normal distribution.

Confidence Intervals for High Quantiles of Heavy-Tailed Distributions (꼬리가 두꺼운 분포의 고분위수에 대한 신뢰구간)

  • Kim, Ji-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • 제27권3호
    • /
    • pp.461-473
    • /
    • 2014
  • We consider condence intervals for high quantiles of heavy-tailed distribution. The asymptotic condence intervals based on the limiting distribution of estimators are considered together with bootstrap condence intervals. We can also apply a non-parametric, parametric and semi-parametric approach to each of these two kinds of condence intervals. We considered 11 condence intervals and compared their performance in actual coverage probability and the length of condence intervals. Simulation study shows that two condence intervals (the semi-parametric asymptotic condence interval and the semi-parametric bootstrap condence interval using pivotal quantity) are relatively more stable under the criterion of actual coverage probability.

Multi-parametric MRIs based assessment of Hepatocellular Carcinoma Differentiation with Multi-scale ResNet

  • Jia, Xibin;Xiao, Yujie;Yang, Dawei;Yang, Zhenghan;Lu, Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권10호
    • /
    • pp.5179-5196
    • /
    • 2019
  • To explore an effective non-invasion medical imaging diagnostics approach for hepatocellular carcinoma (HCC), we propose a method based on adopting the multiple technologies with the multi-parametric data fusion, transfer learning, and multi-scale deep feature extraction. Firstly, to make full use of complementary and enhancing the contribution of different modalities viz. multi-parametric MRI images in the lesion diagnosis, we propose a data-level fusion strategy. Secondly, based on the fusion data as the input, the multi-scale residual neural network with SPP (Spatial Pyramid Pooling) is utilized for the discriminative feature representation learning. Thirdly, to mitigate the impact of the lack of training samples, we do the pre-training of the proposed multi-scale residual neural network model on the natural image dataset and the fine-tuning with the chosen multi-parametric MRI images as complementary data. The comparative experiment results on the dataset from the clinical cases show that our proposed approach by employing the multiple strategies achieves the highest accuracy of 0.847±0.023 in the classification problem on the HCC differentiation. In the problem of discriminating the HCC lesion from the non-tumor area, we achieve a good performance with accuracy, sensitivity, specificity and AUC (area under the ROC curve) being 0.981±0.002, 0.981±0.002, 0.991±0.007 and 0.999±0.0008, respectively.