• Title/Summary/Keyword: Non-OPC

Search Result 68, Processing Time 0.032 seconds

Compensation Characteristics or Distorted WDM Channel dependence on Variation of Fiber Dispersion (광섬유 분산 변동에 따른 왜곡된 WDM 채널의 보상 특성)

  • Lee, Seong-Real
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.7A
    • /
    • pp.719-726
    • /
    • 2004
  • In this paper, compensation characteristics of distorted WDM channel due to both chromatic dispersion and self phase modulation (SPM) is numerically investigated under the assumptions of non-uniformly distributed fiber dispersion, in order to inspect the application of mid-span spectral inversion (MSSI) to any exact transmission links. The MSSI is compensation method used in this approach. This method has an optical phase conjugator (OPC) placed in mid-way of total transmission length to compensate distorted WDM channels. It is confirmed that MSSI will become applicable to long-haul WDM systems by controlling input light power of transmission channels, when the averaged dispersion of both fiber sections with respect OPC was varied and distributed unequally each other. Applying MSSI to long-haul WDM system, it is possible to remove all in-line compensator, consequently it will be expected to reducing system cost.

Mid-Span Spectral Inversion Technique with Optimal Parameters in 640 Gbps WDM Transmission System over NZ-DSF of 1,000 km (1,000 km의 NZ-DSF를 전송하는 640 Gbps WDM 시스템에서 최적 파라미터를 갖는 Mid-Span Spectral Inversion 기법)

  • Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.11 no.1
    • /
    • pp.50-58
    • /
    • 2007
  • In this paper, the optimum position of optical phase conjugator (OPC) and the optimal dispersion coefficients of fiber sections in $16{\times}40$ Gbps WDM system with non zero - dispersion shifted fiber (NZ-DSF) of 1,000 km are induced, in order to expand the availability of mid-span spectral inversion (MSSI) technique in long-haul multi-channel transmission systems. It is confirmed that the compensation degrees of overall WDM channels are more improved by applying the induced optimal parameters into WDM system than those in WDM system with the conventional MSSI. So it is expected that the proposed optimal parameters should alternate with the forming method of the symmetrical distributions of optical power and local dispersion with respect to OPC, which generate a serious problem in the applying OPC into multi-channels WDM system if it is not formed. It will be possible to realize the flexible system design by applying the methods proposed in this paper into the real WDM system with OPC.

  • PDF

Compensation Characteristics Dependence on Variation of Fiber Dispersion in WDM Systems with Optical Phase Conjugator (광 위상 공액기가 적용된 WDM 시스템에서 광섬유 분산 계수 변동에 따른 보상 특성)

  • 이성렬;박경호;정명래
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.5
    • /
    • pp.517-524
    • /
    • 2004
  • In this paper, we investigated the compensation characteristics of distorted NRZ format and RZ format signal dependence on dispersion variation of each transmission section in 8-channel WDM system. The WDM system have two transmission sections of unequal length with respect to optical phase conjugator(OPC) position. We select highly-nonlinear dispersion shifted fiber(HNL-DSF) as a nonlinear medium of OPC in order to convert wideband signal waves to conjugated waves. First, we confirmed that RZ is better than NRZ as a modulation format for maintenance or stable performance, when total dispersion or both sections in WDM system is different each other. Also, we confirmed that total dispersion of the short length section must be smaller than that of the long length section in order to excellently compensate for NRZ format signal.

Solidification of Heavy metals of Non-Sintering Cement using Industrial By- Products (산업부산물을 이용한 비소성 시멘트의 중금속 고정화)

  • 안양진;윤성진;문경주;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.763-768
    • /
    • 2003
  • This study is to specify the properties of solidification/stabilization of heavy metals in connection with looking over the hydration features of non-sintering cement using industrial by-products. In this study, we added Cr and Pb to non-sintering cement(NSC), ordinary portland cement (OPC), and Blast-furnace slag cement(BSC) to specify the solidification process. Heavy metal leaching test was carried out to evaluate solidification degree of various cement. Follow result, marking no higher than 0.7% of un-solidified ratio of BSC was the most predominant result when we mixed the materials with Cr. 5.8% for NSCI and 6.2% for NSC2. On the contrary, in case of adding Pb, NSCl and NSC2 made better solidification results than those of OPC(below 0.2%) and BSC(below 0.05%), marking nearly 0%.

  • PDF

Study on Mock-up test for field application of High Strength Concrete using Non-Sintered Cement (비소성시멘트를 사용한 고강도 콘크리트의 현장적용을 위한 모의부재에 관한 연구)

  • Kim, Han-Sik;Han, Da-Hee;Kim, Kwang-Ki;Paik, Min-Su;Mun, Kyoung-Ju;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.11a
    • /
    • pp.33-36
    • /
    • 2006
  • This Study is based on manufacture non-sintering cement(NSC) by adding phosphogysum and waste lime to GBFS as sulfate and alkali activators. This study also investigates the basic physical properties and duality of NSC, and evaluates its reusing possibility as construction materials. Therefore, we design 40MPa and 60MPa for compressive strength using OPC and NSC by binder. And There is a purpose to present fundamental data, applying in field and analyzing quality control of concrete using NSC according to rate of replace between OPC and NSC.

  • PDF

Effects of Calcium Aluminate Compounds on Hydration of BFS

  • Song, Hyeon-jin;Kang, Seung-Min;Jeon, Se-Hoon;Kim, Jung-Won;Song, Myong-Shin
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.6
    • /
    • pp.483-488
    • /
    • 2015
  • Blast furnace slag(BFS) is well known for its hardening mechanism in ordinary Portland cement with alkali activation due to its latent hydraulic property. The possibility of using calcium compound as activator for BFS has been investigated in this study. The hydration properties of calcium compound activated BFS binders were explored using heat of hydration, powder X-ray diffraction and compressive strength testing. Heat of hydration results indicate that the hydration heat of BFS is lower than OPC paste by about 50%. And ettringite as hydration product was formed continuously as the calcium sulfate was decreased. The maximum compressive strength of hardened BFS mortar at 28 days is confirmed to be 83% as compared with hardened OPC mortar.

A Study of Rheological Properties on Cement Paste System Mixed with Mineral Admixtures (광물혼화재가 혼합된 시멘트 페이스트 시스템의 레올로지 특성에 관한 연구)

  • 박대효;노명현;박춘근
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.505-508
    • /
    • 2003
  • The rheological properties of cement paste system mixed with mineral admixture for the purpose of increasing the strength and improving durability and rheology of concrete were investigated. The results were as follows: The rheological properties of one-ingredient paste system were improved with increasing the dosage of superplasticizer. For two-ingredients paste system, increasing the replacement rate of BFS(blast furnace slag) and FA(fly ash), the yield value and plastic viscosity were decreased compared with non-replacement. In the OPC(ordinary portland cement)-SF(silica fume) system, increasing the replacement rate of SF, the plastic viscosity and yield value increased linearly. In three-ingredients paste system, both OPC-BFS-SF and OPC-FA-SF system, the rheological properties were improved compared with the only replacement of SF. Both two- and three- ingredients paste system, the rheological properties using BFS were improved more than FA.

  • PDF

Characteristics of Incheon Aerosol during Asian Dust Period in 2004 using Optical Particle Counter (OPC) (광학적 입자계수기를 이용한 2004년 황사기간 인천지역 에어로졸 특성)

  • Jung Chang-Hoon;Cho Yong-Sung;Lee Jong-Tae
    • Journal of Environmental Science International
    • /
    • v.14 no.6
    • /
    • pp.565-575
    • /
    • 2005
  • The characteristics for the aerosol number distribution was studied during spring, 2004 in Incheon. Optical Particle Counter (OPC, HIAC/ROYCO 5230) was used in order to measure the number concentration of aerosol in the range of $0.3\~25{\mu}m.$. The obtained results were compared with $PM_{2.5}\;and\;PM_{10}$ data during Asian dust events. The results show that the size resolved aerosol number concentration from OPC measurement has a similar tendency with $PM_{10}\;and\;PM_{2.5}$ mass concentration. During Asian dust periods, the number concentrations in large particle $(CH5\~CH8)$ increase more than small particles which diameter is less than $2.23{\mu}m(CH5)$ and the same results were shown when $PM_{10}$ was compared with $PM_{2.5}$ data compared with non-dust days, Consequently, this study shows that size resolved aerosol number concentration from OPC measurement can be used as a useful tool in comparison of mass concentration data.

Compensation for the Distorted $16{\times}40$ Gbps NRZ Channels in 1,000 km NZ-DSF WDM System Using MSSI with Optimal Parameters

  • Lee, Seong-Real
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1044-1052
    • /
    • 2006
  • In this paper the optimum position of optical phase conjugator (OPC) and the optimal dispersion coefficients of filler sections in WDM system with the conventional mid-span spectral inversion (MSSI) are numerically induced and then applied into $16{\times}40$ Gbps WDM systems with 1,000km non zero - dispersion shifted fiber(NZ-DSF) in order to efficiently compensate for the distorted overall channels. It is confirmed that the compensation extents of overall WDM channels are more improved by applying the induced optimal parameters into WDM system than those in WDM system with the conventional MSSI. So it is expected to alternate with the forming method of the symmetrical distributions of power and local dispersion by applying these optimal parameters into the real WDM system, which generate a serious problem of applying the OPC into multi-channels WDM system if it is not formed. It is also confirmed that two optimal parameters depend on each other, but less related with the finding procedure. And, it will be possible to realize the flexible system design by applying the methods proposed in this paper into the real WDM system with OPC.

Compensation Characteristics of Distorted Channels in 200 Gbps WDM Systems using Mid-Span Spectral Inversion Method (200 Gbps WDM 시스템에서 Mid-Span Spectral Inversion 기법을 이용한 채널 왜곡의 보상 특성)

  • 이성렬
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.8
    • /
    • pp.845-854
    • /
    • 2003
  • In this paper, the characteristics of compensation for WDM channel signal distortion due to both chromatic dispersion and Ken effect in 1,000 km 200 Gbps(5${\times}$40 Gbps) WDM systems was investigated. The WDM system has a path-averaged intensity approximation(PAIA) mid-span spectral inversion(MSSI) as a compensation method. This system has a highly nonlinear dispersion shifted fiber(HNL-DSF) optical phase conjugator(OPC) in the mid-way of transmission line. In order to evaluate the degree of compensation, 1 dB eye opening penalty(EOP), bit error rate(BER) characteristics and power penalty of 10$\^$-9/ BER are used. It is confirmed that HNL-DSF is an useful nonlinear medium in OPC fur wideband WDM system with PAIA MSSI and that the optimal compensation for WDM channel distortion is achieved by the selection of pump light power of OPC, which equalize the conjugated light power into the second half fiber section with the input WDM signal light power depending on total transmission length, dispersion coefficient of fiber, OPC pump light wavelength, conversion efficiency of WDM channel in OPC.