• Title/Summary/Keyword: Non-Local Means

Search Result 141, Processing Time 0.023 seconds

An Efficient Method to Compute a Covariance Matrix of the Non-local Means Algorithm for Image Denoising with the Principal Component Analysis (영상 잡음 제거를 위한 주성분 분석 기반 비 지역적 평균 알고리즘의 효율적인 공분산 행렬 계산 방법)

  • Kim, Jeonghwan;Jeong, Jechang
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.60-65
    • /
    • 2016
  • This paper introduces the non-local means (NLM) algorithm for image denoising, and also introduces an improved algorithm which is based on the principal component analysis (PCA). To do the PCA, a covariance matrix of a given image should be evaluated first. If we let the size of neighborhood patches of the NLM S × S2, and let the number of pixels Q, a matrix multiplication of the size S2 × Q is required to compute a covariance matrix. According to the characteristic of images, such computation is inefficient. Therefore, this paper proposes an efficient method to compute the covariance matrix by sampling the pixels. After sampling, the covariance matrix can be computed with matrices of the size S2 × floor (Width/l) × (Height/l).

Improvement of Non-Local Means Algorithm Using Similarity in Image

  • Jeongwoo Lee;Heeyeon Jo;Jiyun Byun;Hongrae Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.11
    • /
    • pp.145-152
    • /
    • 2024
  • With the widespread adoption of smartphones, acquiring images has become easier. However, challenges arise due to uneven lighting conditions at night and the degradation and noise introduced during image transmission and compression. To minimize this noise and improve image quality, Non-Local Means (NLM) techniques are used, which unlike traditional methods, seek out patches within the image that are similar to the current patch to eliminate noise. However, a drawback of NLM is the diminishing utility as the similar patches become larger. This paper proposes a noise reduction method that utilizes the Sum of Absolute Differences to calculate similarity and applies weights accordingly. The proposed algorithm demonstrates an average improvement of 6.911dB in Peak Signal-to-Noise Ratio (PSNR) on Salt and Pepper noise images, showing a 0.713dB improvement over traditional NLM. When the proposed algorithm is applied to existing NLM optimization papers, performance improvements can be expected.

Experimental study of noise level optimization in brain single-photon emission computed tomography images using non-local means approach with various reconstruction methods

  • Seong-Hyeon Kang;Seungwan Lee;Youngjin Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1527-1532
    • /
    • 2023
  • The noise reduction algorithm using the non-local means (NLM) approach is very efficient in nuclear medicine imaging. In this study, the applicability of the NLM noise reduction algorithm in single-photon emission computed tomography (SPECT) images with a brain phantom and the optimization of the NLM algorithm by changing the smoothing factors according to various reconstruction methods are investigated. Brain phantom images were reconstructed using filtered back projection (FBP) and ordered subset expectation maximization (OSEM). The smoothing factor of the NLM noise reduction algorithm determined the optimal coefficient of variation (COV) and contrast-to-noise ratio (CNR) results at a value of 0.020 in the FBP and OSEM reconstruction methods. We confirmed that the FBP- and OSEM-based SPECT images using the algorithm applied with the optimal smoothing factor improved the COV and CNR by 66.94% and 8.00% on average, respectively, compared to those of the original image. In conclusion, an optimized smoothing factor was derived from the NLM approach-based algorithm in brain SPECT images and may be applicable to various nuclear medicine imaging techniques in the future.

Rain Detection and Removal Algorithm using Motion-Compensated Non-local Means Filter for Video Sequences (동영상을 위한 움직임 보상 기반 Non-Local Means 필터를 이용한 우적 검출 및 제거 알고리즘)

  • Seo, Seung Ji;Song, Byung Cheol
    • Journal of Broadcast Engineering
    • /
    • v.20 no.1
    • /
    • pp.153-163
    • /
    • 2015
  • This paper proposes a rain detection and removal algorithm that is robust against camera motion in video sequences. In detection part, the proposed algorithm initially detects possible rain streaks by using intensity properties and spatial properties. Then, the rain streak candidates are selected based on Gaussian distribution model. In removal part, a non-rain block matching algorithm is performed between adjacent frames to find similar blocks to the block that has rain pixels. If the similar blocks to the block are obtained, the rain region of the block is reconstructed by non-local means (NLM) filter using the similar neighbors. Experimental results show that the proposed algorithm outperforms the previous works in terms of subjective visual quality of de-rained video sequences.

A study on non-local image denoising method based on noise estimation (노이즈 수준 추정에 기반한 비지역적 영상 디노이징 방법 연구)

  • Lim, Jae Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.518-523
    • /
    • 2017
  • This paper proposes a novel denoising method based on non-local(NL) means. The NL-means algorithm is effective for removing an additive Gaussian noise, but the denoising parameter should be controlled depending on the noise level for proper noise elimination. Therefore, the proposed method optimizes the denoising parameter according to the noise levels. The proposed method consists of two processes: off-line and on-line. In the off-line process, the relations between the noise level and the denoising parameter of the NL-means filter are analyzed. For a given noise level, the various denoising parameters are applied to the NL-means algorithm, and then the qualities of resulting images are quantified using a structural similarity index(SSIM). The parameter with the highest SSIM is chosen as the optimal denoising parameter for the given noise level. In the on-line process, we estimate the noise level for a given noisy image and select the optimal denoising parameter according to the estimated noise level. Finally, NL-means filtering is performed using the selected denoising parameter. As shown in the experimental results, the proposed method accurately estimated the noise level and effectively eliminated noise for various noise levels. The accuracy of noise estimation is 90.0% and the highest Peak Signal-to-noise ratio(PSNR), SSIM value.

Oil Spill Detection from RADARSAT-2 SAR Image Using Non-Local Means Filter

  • Kim, Daeseong;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.61-67
    • /
    • 2017
  • The detection of oil spills using radar image has been studied extensively. However, most of the proposed techniques have been focused on improving detection accuracy through the advancement of algorithms. In this study, research has been conducted to improve the accuracy of oil spill detection by improving the quality of radar images, which are used as input data to detect oil spills. Thresholding algorithms were used to measure the image improvement both before and after processing. The overall accuracy increased by approximately 16%, the producer accuracy increased by 40%, and the user accuracy increased by 1.5%. The kappa coefficient also increased significantly, from 0.48 to 0.92.

Gaussian Noise Reduction Technique using Improved Kernel Function based on Non-Local Means Filter (비지역적 평균 필터 기반의 개선된 커널 함수를 이용한 가우시안 잡음 제거 기법)

  • Lin, Yueqi;Choi, Hyunho;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.73-76
    • /
    • 2018
  • A Gaussian noise is caused by surrounding environment or channel interference when transmitting image. The noise reduces not only image quality degradation but also high-level image processing performance. The Non-Local Means (NLM) filter finds similarity in the neighboring sets of pixels to remove noise and assigns weights according to similarity. The weighted average is calculated based on the weight. The NLM filter method shows low noise cancellation performance and high complexity in the process of finding the similarity using weight allocation and neighbor set. In order to solve these problems, we propose an algorithm that shows an excellent noise reduction performance by using Summed Square Image (SSI) to reduce the complexity and applying the weighting function based on a cosine Gaussian kernel function. Experimental results demonstrate the effectiveness of the proposed algorithm.

  • PDF

Edge Detection based on Non Local Means (비지역적 평균 기법을 이용한 경계 검출)

  • Kim, Han-Su;Choi, Myung-Ruyl
    • Annual Conference of KIPS
    • /
    • 2011.11a
    • /
    • pp.298-301
    • /
    • 2011
  • Edge detection is an base research task in the field of image processing. Edge detection can be regarded as a technique for locating pixels of abrupt gray-level change. So with Gradient method, it can be computed easily. But it can't satisfy human naked eye. so in this paper, new algorithm based on the NLM(Non Local Means) is proposed for good performance for human naked eye.

Feasibility Study of Non Local Means Noise Reduction Algorithm with Improved Time Resolution in Light Microscopic Image (광학 현미경 영상 기반 시간 분해능이 향상된 비지역적 평균 노이즈 제거 알고리즘 가능성 연구)

  • Lee, Youngjin;Kim, Ji-Youn
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.623-628
    • /
    • 2019
  • The aim of this study was to design fast non local means (FNLM) noise reduction algorithm and to confirm its application feasibility in light microscopic image. For that aim, we acquired mouse first molar image and compared between previous widely used noise reduction algorithm and our proposed FNLM algorithm in acquired light microscopic image. Contrast to noise ratio, coefficient of variation, and no reference-based evaluation parameter such as natural image quality evaluator (NIQE) and blind/referenceless image spatial quality evaluator (BRISQUE) were used in this study. According to the result, our proposed FNLM noise reduction algorithm can achieve excellent result in all evaluation parameters. In particular, it was confirmed that the NIQE and BRISQUE evaluation parameters for analyzing the overall morphologcal image of the tooth were 1.14 and 1.12 times better than the original image, respectively. In conclusion, we demonstrated the usefulness and feasibility of FNLM noise reduction algorithm in light microscopic image of small animal tooth.

Characteristics of non-emergent patients at emergency departments (응급실을 이용하는 비응급환자의 실태와 특성)

  • Chung, Seol-Hee;Yoon, Han-Deok;Na, Baeg-Ju
    • Health Policy and Management
    • /
    • v.16 no.4
    • /
    • pp.128-146
    • /
    • 2006
  • The objective of this paper is to examine the proportion and characteristics of non-emergent patients at emergency departments. The observational survey was conducted using a structured form used by emergency medicine specialists or senior residents on June 7-20, 2005. 1,526 patients at ten emergency centers took part in this study. The structural form contained type of insurance, route and means of emergency department (ED) visit, triage based on the Manchester Triage Scale(MTS)-modified criteria, emergency level based on the government defined rule, type of emergency centers (Regional Emergency Medical Center; REMC, Local Emergency Medical Center; LEMC, Local Emergency Agency; LEA), as well as patient's general information. Data were analyzed using SAS statistical program(V.8.2). Descriptive analysis was performed to describe the magnitude of non-emergent patients. ${\chi}^2-analysis$ and logistic regression analysis was performed to identify the nonurgent patients' characteristics. In the MTS-modified criteria, we found a 15.3% rate of non-emergent patients. This rate differed from that of non-emergent patients obtained using government's rule. In particular, there were inaccuracies in the definition of government rule on non-emergent patients, so it is necessary to apply the new government rule regarding classification of non-emergent patients. There were significant differences in the rate of non-emergent patients according to type of ED, means of ED visit, time to visit, and insurance. Non-emergent patients are more likely to visit a D-type ED(LEA having less than 20,000 patients annually), not to use ambulance, to have 'Automobile Insurance, Industrial Accident Compensation Insurance, or pay out-of-pocket'. Non-emergent patients tend to visit ED due to illness rather than injury. Further studies on the development' of triage scale and reexamination of the government's rule on emergency visits are required for future policy in this area.