• 제목/요약/키워드: Non-Linear Optimization

검색결과 339건 처리시간 0.023초

Non-linear study of mode II delamination fracture in functionally graded beams

  • Rizov, Victor I.
    • Steel and Composite Structures
    • /
    • 제23권3호
    • /
    • pp.263-271
    • /
    • 2017
  • A theoretical study was carried-out of mode II delamination fracture behavior of the End Loaded Split (ELS) functionally graded beam configuration with considering the material non-linearity. The mechanical response of ELS was modeled analytically by using a power-law stress-strain relation. It was assumed that the material is functionally graded transversally to the beam. The non-linear fracture was investigated by using the J-integral approach. Equations were derived for the crack arm curvature and zero axes coordinate that are needed for the J-integral solution. The analysis developed is valid for a delamination crack located arbitrary along the beam height. The J-integral solution was verified by analyzing the strain energy release rate with considering material non-linearity. The effects of material gradient, non-linear material behavior and crack location on the fracture were evaluated. The solution derived is suitable for parametric analyses of non-linear fracture. The results obtained can be used for optimization of functionally graded beams with respect to their mode II fracture performance. Also, such simplified analytical models contribute for the understanding of delamination fracture in functionally graded beams exhibiting material non-linearity.

신뢰성에 기초한 철탑구조물의 최적화에 관한 연구 (Reliability-Based Structural Optimization of Transmission Tower)

  • 김성호;김상효;황학주
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 봄 학술발표회논문집
    • /
    • pp.135-140
    • /
    • 1993
  • The optimum weight design of structure is to determine the combination of structural members which minimize the weight of structures and satisfy design conditions as well. Since most of loads and design variables considered in structural design have uncertain natures, the reliability-based optimization techniques need to be developed. The aim of this study is to estabilish the general algorithm for the minimum weight design of transmission tower structure system with reliability constraints. The sequential linear programming method is used to solve non-linear minimization problems, which converts original non-linear programming problems to sequential linear programming problems. The optimal solutions are produced for various reliability levels such as reliability levels inherent in current standard transmission tower cross-section and optimal transmission tower cross-section obtained with constraints of current design criteria as well as selected target reliability index. The optimal transmission towers satisfying reliability constraints sustain consistent reliability levels on all members. Consequently, more balanced optimum designs are accomplished with less structural weight than traditional designs dealing with deterministic design criteria.

  • PDF

데이터베이스 색인선택 문제에 대한 Davis-Putnam 기반 최적화 알고리즘의 성능 분석 (Analyzing the Performance of a Davis-Putnam based Optimization Algorithm for the Index Selection Problem of Database Systems)

  • 서상구
    • 정보기술과데이타베이스저널
    • /
    • 제7권2호
    • /
    • pp.47-59
    • /
    • 2000
  • In this paper, we analyze the applicability of a general optimization algorithm to a database optimization problem. The index selection problem Is the problem to choose a set of indexes for a database in a way that the cost to process queries in the given workload is minimized subject to a given storage space restriction for storing indexes. The problem is well known in database research fields, and many optimization and/or heuristic algorithms have been proposed. Our work differs from previous research in that we formalize the problem in the form of non-linear Integer Programming model, and investigate the feasibility and applicability of a general purpose optimization algorithm, called OPBDP, through experiments. We implemented algorithms to generate workload data sets and problem instances for the experiment. The OPBDP algorithm, which is a non-linear 0-1 Integer Programming problem solver based on Davis-Putnam method, worked generally well for our problem formulation. The experiment result showed various performance characteristics depending on the types of decision variables, variable navigation methods and ocher algorithm parameters, and indicates the need of further study on the exploitation of the general purpose optimization techniques for the optimization problems in database area.

  • PDF

MINLP optimization of a composite I beam floor system

  • Zula, Tomaz;Kravanja, Stojan;Klansek, Uros
    • Steel and Composite Structures
    • /
    • 제22권5호
    • /
    • pp.1163-1192
    • /
    • 2016
  • This paper presents the cost optimization of a composite I beam floor system, designed to be made from a reinforced concrete slab and steel I sections. The optimization was performed by the mixed-integer non-linear programming (MINLP) approach. For this purpose, a number of different optimization models were developed that enable different design possibilities such as welded or standard steel I sections, plastic or elastic cross-section resistances, and different positions of the neutral axes. An accurate economic objective function of the self-manufacturing costs was developed and subjected to design, resistance and deflection (in)equality constraints. Dimensioning constraints were defined in accordance with Eurocode 4. The Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm was applied together with a two-phase MINLP strategy. A numerical example of the optimization of a composite I beam floor system, as presented at the end of this paper, demonstrates the applicability of the proposed approach. The optimal result includes the minimal produced costs of the structure, the optimal concrete and steel strengths, and dimensions.

유출 모델에 의한 손실함수의 결정 (Optimal Determination of Loss Rate Functions by Runoff Modelling)

  • 이재형;황만하
    • 대한토목학회논문집
    • /
    • 제5권4호
    • /
    • pp.57-64
    • /
    • 1985
  • 유출 특성이 정상이라는 가정하에 침투능식의 매개 변수들을 추정하기 위해 다음의 절차를 고안하였다 : (1) 최적화기법에 의하여 유출모형의 제 매개변수를 추정한다. (2) 추정된 매개 변수들이 정상이라는 가정하의 기간 동안에 발생한 호우들에 대해 적합성을 보이도록 유효우량을 제어한다. (3) (1)~(2)의 절차를 반복하여 모든 매개 변수들이 평형상태에이르면 최적 제어된 손실우량을 수식으로 표현하기 위하여 비선형 fitting 을 적용한다. 이때 손실우량은 강우심도를 반영하도록 한다. 횡성 유역의 연속된 3개의 호우에 대해 위 기법을 적용한 결과, 선정된 얼개와 고안된 절차는 관측치에 충분한 적합성을 보였고 과거 연구와도 비교하였다.

  • PDF

Hyperion 영상의 제약선형분광혼합분석 기반 무감독 Endmember 추출 최적화 기법 (Unsupervised Endmember Selection Optimization Process based on Constrained Linear Spectral Unmixing of Hyperion Image)

  • 최재완;김용일;유기윤
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.211-216
    • /
    • 2006
  • The Constrained Linear Spectral Unmixing(CLSU) is investigated for sub-pixel image processing, Its result is the abundance map which mean fractions of endmember existing in a mixed pixel. Compared to the Linear Spectral Unmixing using least square method, CLSU uses the NNLS (Non-Negative Least Square) algorithm to guarantee that the estimated fractions are constrained. But, CLSU gets Into difficulty in image processing due to select endmember at a user's disposition. In this study, endmember selection optimization method using entropy in the error-image analysis is proposed. In experiments which is used hyperion image, it is shown that our method can select endmember number than CLSU based on unsupervised endemeber selection.

  • PDF

쿤-터커 조건을 이용한 건물의 에너지성능과 비용 최적화방법 (Optimization Method of Building Energy Performance and Construction Cost Using Kuhn-Tucker Conditions)

  • 원종서;구재오
    • KIEAE Journal
    • /
    • 제3권2호
    • /
    • pp.51-58
    • /
    • 2003
  • The purpose of this study is to present rational methods of multi-criteria optimization of the shape of energy saving buildings. The object is to determine the optimum dimension of the shape of a building, based on the following criteria: minimum building costs (including the cost of materials and construction) and yearly heating costs. Mathematical model described heat losses and gains in a building during the heating season. It takes into consideration heat losses through wall, roof, floor and windows. Particular attention was paid to have a more detailed description of heat gains due to solar radiation. On the assumption that shape of building is rectangle in order to solve the problem, the proportions of wall length and building height are determined by using non-linear programing methods(Kuhn-Tucker Conditions). The results constitute information for designers on the optimum proportions of wall lengths, height, and the ratios of window to wall areas for energy saving buildings.

Optimal Design for Hybrid Active Power Filter Using Particle Swarm Optimization

  • Alloui, Nada;Fetha, Cherif
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권3호
    • /
    • pp.129-135
    • /
    • 2017
  • This paper introduces a design and a simulation of a hybrid active power filter (HAPF) for harmonics reduction given an ideal supply source. The synchronous reference frame method has been used here to identify the reference currents. The proposed HAPF uses a new artificial- intelligence technique called Particle Swarm Optimization (PSO) for tuning the parameters of a proportional and integral controller called PI-PSO. The PI-PSO controller is used to archive optimality for the DC-link voltage of the HAPF-inverter. The hysteresis non-linear current control method is used in this approach to compare the extracted reference and the actual currents in order to generate the pulse gate required for the HAPF. Results obtained by simulations with Matlab/Simuling show that the proposed approach is very flexible and effective for eliminating harmonic currents generated by the non-linear load with the HAPF based PSO tuning.

고차 주파수응답함수를 이용한 비선형시스템의 매개변수 추정 (Use of Higher Order Frequency Response Functions for Non-Linear Parameter Estimation)

  • 이건명
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.223-229
    • /
    • 1997
  • Presented is a method to estimate system parameters of a system with polynomial non-linerities from the measured higher order frequency response functions. Higher order FRFs can be measured on some restricted regions by sinusoidally exciting a non-linear system with various input amplitudes and measuring the response component at the excitation frequency. These higher order FRFs can be expressed in terms of system parameter, and the system parameters can be estimated from the measured FRFs. Since the expressions for higher order FRFs are complicated, system parameters can be estimated from them using an optimization technique. The present method has been applied to a simulated single degree of freedom system with non-linear stiffness and damping, and has estimated accurate system parameters.

  • PDF

Optimal design of double layer barrel vaults considering nonlinear behavior

  • Gholizadeh, Saeed;Gheyratmand, Changiz;Davoudi, Hamed
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1109-1126
    • /
    • 2016
  • The present paper focuses on size optimization of double layer barrel vaults considering nonlinear behavior. In order to tackle the optimization problem an improved colliding bodies optimization (ICBO) algorithm is proposed. The important task that should be achieved before optimization of structural systems is to determine the best form having the least cost. In this study, an attempt is done to find the best form then it is optimized considering linear and non-linear behaviors. In the optimization process based on nonlinear behavior, the geometrical and material nonlinearity effects are included. A large-scale double layer barrel vault is presented as the numerical example of this study and the obtained results indicate that the proposed ICBO has better computational performance compared with other algorithms.