• Title/Summary/Keyword: Non-Linear Algorithm

Search Result 791, Processing Time 0.03 seconds

Directivity Characteristics of Non-Linear Array for Wide-Band One-Shot Beamforming (광대역 단일빔형성을 위한 비선형배열의 지향 특성)

  • 도경철;손경식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.27-34
    • /
    • 1999
  • This paper proposes an algorithm to design the non-linear array so as to form efficiently the one-shot beam with relatively less sensors for acoustic measurement. In this algorithm, according to the spatial sampling theory the part for high frequency(HF) band has equispaced sensor array and the sensor distances below the HF band are decided as a function of number of HF sensors. As the results of the simulations, the mean and variances of directivity index(DI) of non-linear array which has less sensors are similar to those of linear array. and the DI variation for beam steering angle is very small. And the beam width at -2dB point is 6.8°. Thus it is confirmed that the design algorithm for non-linear array which is proposed to have less sensors can be efficiently used in acoustic measurement.

  • PDF

Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm

  • Degertekin, S.O.;Hayalioglu, M.S.;Gorgun, H.
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.535-555
    • /
    • 2009
  • The harmony search method based optimum design algorithm is presented for geometrically non-linear semi-rigid steel frames. Harmony search method is recently developed metaheuristic algorithm which simulates the process of producing a musical performance. The optimum design algorithm aims at obtaining minimum weight steel frames by selecting from standard set of steel sections such as European wide flange beams (HE sections). Strength constraints of Turkish Building Code for Steel Structures (TS648) specification and displacement constraints were used in the optimum design formulation. The optimum design algorithm takes into account both the geometric non-linearity of the frame members and the semi-rigid behaviour of the beam-to-column connections. The Frye-Morris polynomial model is used to calculate the moment-rotation relation of beam-to-column connections. The robustness of harmony search algorithm, in comparison with genetic algorithms, is verified with two benchmark examples. The comparisons revealed that the harmony search algorithm yielded not only minimum weight steel frames but also required less computational effort for the presented examples.

Accurate Camera Calibration Using GMDH Algorithm (GMDH 알고리즘을 이용한 정확한 카메라의 보정기법)

  • Kim, Myoung-Hwan;Do, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.592-594
    • /
    • 2004
  • Camera calibration is an important problem to determine the relationship between 3D real world and 2D camera image. The existing calibration methods can be classified into linear and non-linear models. The linear methods are simple and robust against noise, but the accuracy expectation is generally poor. In comparison, if the non-linearity, which is due mainly to lens distortion, is corrected, the accuracy can be better. However, as the optical features of lens are diverse, no non-linear method can be always effective for diverse vision systems. In this paper, we propose a new approach to correct the calibration error of a linear method using GMDH algorithm. The proposed technique is simple in concept and showed improved accuracy in various cases.

  • PDF

Efficient non-linear analysis and optimal design of biomechanical systems

  • Shojaei, I.;Kaveh, A.;Rahami, H.;Bazrgari, B.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.207-223
    • /
    • 2015
  • In this paper a method for simultaneous swift non-linear analysis and optimal design/posture of mechanical/biomechanical systems is presented. The method is developed to get advantages of iterations in non-linear analysis and/or generations in genetic algorithm (GA) for the purpose of efficient analysis within the optimal design/posture. The method is applicable for both size and geometry optimizations wherein material and geometry non-linearity are present. In addition to established mechanical systems, the method can solve biomechanical models of human musculoskeletal system. Optimization-based procedures are popular methods for resolving the redundancy at joints wherein the number of unknown muscle forces is far more than the number of equilibrium equations. These procedures involve optimization of a cost function(s) which is assumed to be consistent with the central nervous system's strategy when activating muscles to assure equilibrium. However, because of the complexity of biomechanical problems (i.e., due to non-linear biomaterial, large deformation, redundancy of the problem and so on) efficient analysis are required within optimization procedures as suggested in this paper.

Non linear vibrations of stepped beam systems using artificial neural networks

  • Bagdatli, S.M.;Ozkaya, E.;Ozyigit, H.A.;Tekin, A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.1
    • /
    • pp.15-30
    • /
    • 2009
  • In this study, the nonlinear vibrations of stepped beams having different boundary conditions were investigated. The equations of motions were obtained by using Hamilton's principle and made non dimensional. The stretching effect induced non-linear terms to the equations. Natural frequencies are calculated for different boundary conditions, stepped ratios and stepped locations by Newton-Raphson Method. The corresponding nonlinear correction coefficients are also calculated for the fundamental mode. At the second part, an alternative method is produced for the analysis. The calculated natural frequencies and nonlinear corrections are used for training an artificial neural network (ANN) program which has a multi-layer, feed-forward, back-propagation algorithm. The results of the algorithm produce errors less than 2.5% for linear case and 10.12% for nonlinear case. The errors are much lower for most cases except clamped-clamped end condition. By employing the ANN algorithm, the natural frequencies and nonlinear corrections are easily calculated by little errors, and the computational time is drastically reduced compared with the conventional numerical techniques.

Cognitive Contrast Enhancement of Image Using Adaptive Parameter Based on Non-Linear Masking (비선형 마스킹 기법 기반의 적응적 파라미터를 이용한 영상의 인지적 대비 향상)

  • Kim, Kyoung-Su;Kim, Jong-Sung;Lee, Cheol-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1365-1372
    • /
    • 2011
  • This paper proposes a cognitive contrast enhancement algorithm based on the non-linear masking to advance low cognitive contrast in dark regions of images. In order to improve brightness in dark regions of an image, we propose a new contrast enhancement algorithm based on the non-linear masking using regional adaptive parameters of an image. For performance evaluation of the proposed method, chromaticity and saturation comparison as a quantitative assessment and z-score comparison as a qualitative assessment were executed between test images and their simulated images by SSR, MSR, a conventional non-linear masking and the proposed method, respectively. As a result, the proposed method showed low chromaticity and saturation difference and improved cognitive contrast for the three methods.

Identification Algorithm for Up/Down Sliding PRIs of Unidentified RADAR Pulses With Enhanced Electronic Protection (우수한 전자 보호 기능을 가진 미상 레이더 펄스의 상/하 슬라이딩 PRI 식별 알고리즘)

  • Lee, Yongsik;Kim, Jinsoo;Kim, Euigyoo;Lim, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.611-619
    • /
    • 2016
  • Success in modern war depends on electronic warfare. Therefore, It is very important to identify the kind of Radar PRI modulations in a lot of Radar electromagnetic waves. In this paper, I propose an algorithm to identify Linear up Sliding PRI, Non-Linear up Sliding PRI and Linear Down Sliding PRI, Non-Linear Down Sliding PRI among many Radar pulses. We applied not only the TDOA(Time Difference Of Arrival) concept of Radar pulse signals incoming to antennas but also a rising and falling curve characteristics of those PRI's. After making a program by such algorithm, we input each 40 data to those PRI's identification programs and as a result, those programs fully processed the data in according to expectations. In the future, those programs can be applied to the ESM, ELINT system.

Ensuring Data Confidentiality and Privacy in the Cloud using Non-Deterministic Cryptographic Scheme

  • John Kwao Dawson;Frimpong Twum;James Benjamin Hayfron Acquah;Yaw Missah
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.49-60
    • /
    • 2023
  • The amount of data generated by electronic systems through e-commerce, social networks, and data computation has risen. However, the security of data has always been a challenge. The problem is not with the quantity of data but how to secure the data by ensuring its confidentiality and privacy. Though there are several research on cloud data security, this study proposes a security scheme with the lowest execution time. The approach employs a non-linear time complexity to achieve data confidentiality and privacy. A symmetric algorithm dubbed the Non-Deterministic Cryptographic Scheme (NCS) is proposed to address the increased execution time of existing cryptographic schemes. NCS has linear time complexity with a low and unpredicted trend of execution times. It achieves confidentiality and privacy of data on the cloud by converting the plaintext into Ciphertext with a small number of iterations thereby decreasing the execution time but with high security. The algorithm is based on Good Prime Numbers, Linear Congruential Generator (LGC), Sliding Window Algorithm (SWA), and XOR gate. For the implementation in C, thirty different execution times were performed and their average was taken. A comparative analysis of the NCS was performed against AES, DES, and RSA algorithms based on key sizes of 128kb, 256kb, and 512kb using the dataset from Kaggle. The results showed the proposed NCS execution times were lower in comparison to AES, which had better execution time than DES with RSA having the longest. Contrary, to existing knowledge that execution time is relative to data size, the results obtained from the experiment indicated otherwise for the proposed NCS algorithm. With data sizes of 128kb, 256kb, and 512kb, the execution times in milliseconds were 38, 711, and 378 respectively. This validates the NCS as a Non-Deterministic Cryptographic Algorithm. The study findings hence are in support of the argument that data size does not determine the execution.

A Mixed Integer Linear Programming Approach for the Profit Based Unit Commitment Problem under Non-Linear Fuel Consumption Constraint and Maintenance Cost (비선형 연료 제약 및 유지보수 비용을 고려한 Mixed Integer Linear Programming 기반 발전기 주간 운용계획 최적화)

  • Song, Sang-Hwa;Lee, Kyung-Sik
    • Korean Management Science Review
    • /
    • v.25 no.1
    • /
    • pp.43-53
    • /
    • 2008
  • This paper considers a profit-based unit commitment problem with fuel consumption constraint and maintenance cost, which is one of the key decision problems in electricity industry. The nature of non-linearity inherent in the constraints and objective functions makes the problem intractable which have led many researches to focus on Lagrangian based heuristics. To solve the problem more effectively, we propose mixed integer programming based solution algorithm linearizing the complex non-linear constraints and objectives functions. The computational experiments using the real-world operation data taken from a domestic electricity power generator show that the proposed algorithm solves the given problem effectively.

New Non-linear Inverse Quantization Algorithm and Hardware Architecture for Digital Audio Codecs (디지털 오디오 코덱을 위한 새로운 비선형 역 양자화 알고리즘과 하드웨어 구조)

  • Moon, Jong-Ha;Baek, Jae-Hyun;SunWoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1C
    • /
    • pp.12-18
    • /
    • 2008
  • This paper This paper proposes a new inverse-quantization(IQ) table interpolation algorithm, specialized Digital Signal Processor(DSP) instructions and hardware architecture for digital audio codecs. Non-linear inverse quantization algorithm is representatively used in both MPEG-1 Layer-3 and MPEG-2/4 Advanced Audio Coding(AAC). The proposed instructions are optimized for the non-linear inverse quantization. The proposed algorithm can minimize operational complexity which reduces total computational load. Performance comparisons show a significant improvement of average error. The proposed instructions and hardware architecture can reduce 20% of the instruction counts and minimize computational loads of IQ algorithms effectively compared with existing IQ table interpolation algorithms. Proposed algorithm can implement commercial DSPs.