• Title/Summary/Keyword: Non-Fuzzy Neural Networks

Search Result 41, Processing Time 0.021 seconds

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.

A Study on Subjective Assessment of Knit Fabric by ANFIS

  • Ju Jeong-Ah;Ryu Hyo-Seon
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.203-212
    • /
    • 2006
  • The purpose of this study was to examine the effects of the structural properties of plain knit fabrics on the subjective perception of textures, sensibilities, and preference among consumers. This study, then, aimed to provide useful information with respect to planning and designing knitted fabrics by predicting the subjective characteristics analyzed according to their structural properties. For this purpose, we employed statistical analysis tools, such as factor and regression analysis and an adaptive-network-based fuzzy inference system(ANFIS), thereby combining the merits of fuzzy and neural networks and presupposing a non-linear relationship. Through factor analysis, we also categorized the subjective textures into 'roughness', 'softness', 'bulkiness' and 'stretch-ability' with R2=70.32%: and categorized the sensibilities into 'Stable/Neat', 'Natural/Comfortable' and 'Feminine/Elegant' with R2=68.12%. We analyzed subjective textures, sensibilities, and preference with ANFIS, assuming non-linear relationships; consequently, we were able to generate three or four fuzzy rules using wool/rayon fiber content and loop length as input data. The textures of roughness and softness exhibited a linear relationship, but other subjective characteristics demonstrated a non-linear input-output relationship. Compared with linear regression analysis, the ANFIS exhibited had higher predictive power with respect to predicting subjective characteristics.

Gestures as a Means of Human-Friendly Communication between Man and Machine

  • Bien, Zeungnam
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.3-6
    • /
    • 2000
  • In this paper, ‘gesture’ is discussed as a means of human-friendly communication between man and machine. We classify various gestures into two Categories: ‘contact based’ and ‘non-contact based’ Each method is reviewed and some real applications are introduced. Also, key design issues of the method are addressed and some contributions of soft-computing techniques, such as fuzzy logic, artificial neural networks (ANN), rough set theory and evolutionary computation, are discussed.

  • PDF

A Study on Development of Ship Economic Evaluation System Using ASMOD (ASMOD를 이용한 선박 경제성 평가시스템 구축에 관한 연구)

  • Shin, Soo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.2
    • /
    • pp.213-220
    • /
    • 2008
  • The aim of this paper is to build up the design model using ASMOD(Adaptive Spline Modeling of Observation Data) for the optimum scale of fleet, ship particulars and ship speed, etc. ASMOD, which define membership functions of fuzzy rule as B-spline basis function, represents a whole system as the sum of the sub-model. As it reduces the number of division of the space generated by the fuzzy set of input variables, it has a advantage of simplification to model structure and is efficient to represent the non-linear model.

NEW INTELLIGENT APPROACH FOR PROJECT MANAGEMENT IN CONSTRUCTION INDUSTRY

  • D. Aparna;D. Sridhar;J. Rajani;B. Sravani;V.S.S. Kumar
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.366-370
    • /
    • 2005
  • The construction environment is dynamic in nature and is characterized by various degrees of uncertainties. The uncertainties such as lack of coordination, non availability of resources, condition of temporary structures and varying weather conditions have a significant impact on estimating the duration of activities. These are subjective, vague and imprecisely defined and are expressed in subjective measures rather than mathematical terms. Conventionally, various quantitative techniques such as CPM and PERT have emerged in construction industry. These techniques cannot solve the above problems and rely on human experts which may not always be possible. In such situations Artificial Intelligence tools such as fuzzy sets and neural networks handle such variables and provide global strategies. The present paper evaluates the effect of qualitative factors to identify the activity duration using new intelligent approach. The results are compared with conventional methods for effective project management. A case study is considered to demonstrate the applicability of fuzzy logic for project scheduling.

  • PDF

Part-Machine Grouping Using Production Data-based Part-Machine Incidence Matrix: Neural Network Approach (생산자료기반 부품-기계행렬을 이용한 부품-기계 그룹핑 : 인공신경망 접근법)

  • Won Yu-Gyeong
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.05a
    • /
    • pp.354-358
    • /
    • 2006
  • This study is concerned with the part-machine grouping(PMG) based on the non-binary part-machine incidence matrix in which real manufacturing Factors such as the operation sequences with multiple visits to the same machine and production volumes of parts are incorporated and each entry represents actual moves due to different operation sequences. The proposed approach adopts Fuzzy ART neural network to quickly create the initial part families and their associated machine cells. To enhance the poor solution due to category proliferation inherent to most artificial neural networks, a supplementary procedure reassigning parts and machines is added. To show effectiveness of the proposed approach to large-size PMG problems, a psuedo-replicated clustering procedure is designed and implemented.

  • PDF

Minimized Stock Forecasting Features Selection by Automatic Feature Extraction Method (자동 특징 추출기법에 의한 최소의 주식예측 특징선택)

  • Lee, Sang-Hong;Lim, Joon-S.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.206-211
    • /
    • 2009
  • This paper presents a methodology to 1-day-forecast stock index using the automatic feature extraction method based on the neural network with weighted fuzzy membership functions (NEWFM). The distributed non-overlap area measurement method selects the minimized number of input features by automatically removing the worst input features one by one. CPP$_{n,m}$(Current Price Position of the day n: a percentage of the difference between the price of the day n and the moving average from the day n-1 to the day n-m) and the 2 wavelet transformed coefficients from the recent 32 days of CPP$_{n,m}$ are selected as minimized features using bounded sum of weighted fuzzy membership functions (BSWFMs). For the data sets, from 1989 to 1998, the proposed method shows that the forecast rate is 60.93%.

An Application of Artificial Intelligence System for Accuracy Improvement in Classification of Remotely Sensed Images (원격탐사 영상의 분류정확도 향상을 위한 인공지능형 시스템의 적용)

  • 양인태;한성만;박재국
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2002
  • This study applied each Neural Networks theory and Fuzzy Set theory to improve accuracy in remotely sensed images. Remotely sensed data have been used to map land cover. The accuracy is dependent on a range of factors related to the data set and methods used. Thus, the accuracy of maps derived from conventional supervised image classification techniques is a function of factors related to the training, allocation, and testing stages of the classification. Conventional image classification techniques assume that all the pixels within the image are pure. That is, that they represent an area of homogeneous cover of a single land-cover class. But, this assumption is often untenable with pixels of mixed land-cover composition abundant in an image. Mixed pixels are a major problem in land-cover mapping applications. For each pixel, the strengths of class membership derived in the classification may be related to its land-cover composition. Fuzzy classification techniques are the concept of a pixel having a degree of membership to all classes is fundamental to fuzzy-sets-based techniques. A major problem with the fuzzy-sets and probabilistic methods is that they are slow and computational demanding. For analyzing large data sets and rapid processing, alterative techniques are required. One particularly attractive approach is the use of artificial neural networks. These are non-parametric techniques which have been shown to generally be capable of classifying data as or more accurately than conventional classifiers. An artificial neural networks, once trained, may classify data extremely rapidly as the classification process may be reduced to the solution of a large number of extremely simple calculations which may be performed in parallel.

Design of RBF Neural Networks Based on Recursive Weighted Least Square Estimation for Processing Massive Meteorological Radar Data and Its Application (방대한 기상 레이더 데이터의 원할한 처리를 위한 순환 가중최소자승법 기반 RBF 뉴럴 네트워크 설계 및 응용)

  • Kang, Jeon-Seong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.

Design of Meteorological Radar Echo Classifier Using Fuzzy Relation-based Neural Networks : A Comparative Studies of Echo Judgement Modules (FNN 기반 신경회로망을 이용한 기상 레이더 에코 분류기 설계 : 에코판단 모듈의 비교 분석)

  • Ko, Jun-Hyun;Song, Chan-Seok;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.562-568
    • /
    • 2014
  • There exist precipitation echo and non-precipitation echo in the meteorological radar. It is difficult to effectively issue the right weather forecast because of a difficulty in determining these ambiguous point. In this study, Data is extracted from UF data of meteorological radar used. Input and output data for designing two classifier were built up through the analysis of the characteristics of precipitation and non-precipitation. Selected input variables are considered for better performance and echo classifier is designed using fuzzy relation-based nueral network. Comparative studies on the performance of echo classifier are carried out by considering both echo judgement module 1 and module 2.