• 제목/요약/키워드: Non-Equilibrium Solidification

검색결과 6건 처리시간 0.015초

역확산을 고려한 이원합금의 비평형 수지상응고 해석 (Analysis on the non-equilibrium dendritic solidification of a binary alloy with back diffusion)

  • 정재동;유호선;이준식
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3361-3370
    • /
    • 1996
  • Micro-Macro approach is conducted for the mixture solidification to handle the closely linked phenomena of microscopic solute redistribution and macroscopic solidification behavior. For this purpose, present work combines the efficiency of mixture theory for macro part and the capability of microscopic analysis of two-phase model for micro part. The micro part of present study is verified by comparison with experiment of Al-4.9 mass% Cu alloy. The effect of back diffusion on the macroscopic variables such as temperature and liquid concentration, is appreciable. The effect, however, is considerable on the mixture concentration and eutectic fraction which are indices of macro and micro segregation, respectively. According to the diffusion time, the behavior near the cooling wall where relatively rapid solidification permits short solutal diffusion time, approaches Scheil equation limit and inner part approaches lever rule limit.

Squeeze Cast한 Al기지 금속복합재료의 응고거동 (Solidification Characteristics of Squeeze Cast Al Alloy Composites)

  • 김대업;김진;박익민
    • 한국주조공학회지
    • /
    • 제11권3호
    • /
    • pp.208-216
    • /
    • 1991
  • The solidification behavior of the squeeze cast composites of aluminum alloys reinforced with boron fiber($100{\mu}m$) and silicon carbide fibers($140{\mu}m$ and $15{\mu}m$) were investigated. Al-4.5wt%Cu and Al-l0wt%Mg were chosen for the matrix phase of the composites. In the squeeze cast specimen with high thermal difference between fiber and melt, the average secondary dendrite arm spacing(DAS) in reinforced alloy is smaller than that in unreinforced alloy. It was also observed that primary ${\alpha}$ and non-equilibrium eutectic, which seems to be penetrated and solidified at the final stage of the solidification of the matrix, are irregularly distributed around fibers. It is considered that cold fibers serve as heterogeneous nucleation site. While in the remelted and resolidified specimen without temperature difference, the DAS was not changed with reinforcement and microstructure reveals non-equilibrium eutectic with relatively uniform thickness around fibers. It might be evident the nucleation starts at interfiber region. Microsegregation decreases with the decrease in cooling rate and with reinforcement in the as-squeeze cast specimen. Al-10wt% Mg alloy shows less microsegregation than Al-4.5wt%Cu alloy.

  • PDF

용탕단조 Al-Cu-Si-Mg합금의 열처리시 제2응고상의 분해거동 (Decomposition Behavior of Secondary Solidification Phase During Heat Treatment of Squeeze Cast Al-Cu-Si-Mg)

  • 김유찬;김도향;한요섭;이호인
    • 한국주조공학회지
    • /
    • 제17권6호
    • /
    • pp.560-568
    • /
    • 1997
  • The dissolution behavior of secondary solidification phases in squeeze cast Al-3.9wt%Cu-1.5wt%Si-1.0wt%Mg has been studied using a combination of optical microscope, image analyzer, scanning electron microscope(SEM), energy dispersive spectrometer(EDS), X-ray diffractometer(XRD) and differential thermal analyzer (DTA). Special emphasis was placed on the investigation of the effects of the nonequilibrium heat treatment on the dissolution of the second solidification phases. Ascast microstructure consisted of primary solidification product of ${\alpha}-Al$ and secondary solidification products of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$. Equilibrium and non-equilibrium solution treatments were carried out at the temperatures of $495^{\circ}C$, $502^{\circ}C$ and $515^{\circ}C$ for 3 to 5 hours. The amount of the dissolved secondary phases increased with increasing solution treatment temperature, for example, area fractions of $Al_2Cu$, $Mg_2Si$ and $Al_2CuMg$ were approximately 0%, 1.6% and 4.2% after solution treatment at $495^{\circ}C$ for 5hours, and were approximately 0%, 0.36% and 2% after solution treatment at $515^{\circ}C$ for 5hours. The best combination of tensile properties was obtained when the as-cast alloy was solution treated at $515^{\circ}C$ for 3hours followed by aging at $180^{\circ}C$ for 10 hours. Detailed DTA and TEM study showed that the strengthening behavior during aging was due to enhanced precipitation of the platelet type fine ${\theta}'$ phase.

  • PDF

급속응고한 Ti-48Al-xCr 금속간화합물의 미세조직에 관한 연구 (A Study on the Microstructures of Rapidly Solidified Ti-48Al-xCr Intermetallic Compounds)

  • 정태호;황정현;남태운
    • 한국주조공학회지
    • /
    • 제19권6호
    • /
    • pp.472-483
    • /
    • 1999
  • The effects of rapid solidification and Cr addition to the microstructure variations of the rapid solidified Ti-48Al-xCr(X = 2,4,6) alloys have been investigated using X-ray diffractometry, optical microscopy, scanning electron microscopy and transmission electron microscopy. The segregated coarse ${\gamma}$ phase was eliminated and the microstructure was refined by rapid solidification of the cooling rate of $10^4-10^6\;^{\circ}C/sec$. The lattice parameters and tetragonality of ${\gamma}$ phase decrease with the increase Cr content and by the rapid solidification. Non-equilibrium phase ${\alpha}$ remains at room temperature condition, which would be resulted from the restriction of phase transformation ${\alpha}$ to ${\alpha}_2+{\gamma}$.

  • PDF

열전도에 의해 지배되는 이성분혼합물의 응고문제에 대한 해석해 (Analytical solution to the conduction-dominated solidification of a binary mixture)

  • 정재동;유호선;노승탁;이준식
    • 대한기계학회논문집B
    • /
    • 제20권11호
    • /
    • pp.3655-3665
    • /
    • 1996
  • An analytical solution is presented for the conduction-dominated solidification of a binary mixture in a semi-infinite medium. The present approach differs from that of other solution by these four characteristics. (1) Solid fraction is determined from the phase diagram, (2) thermophysical properties in mushy zone are weighted according to the local solid fraction, (3) non-equilibrium solidification can be simulated and (4) the cooling condition of under-eutectic temperature can be simulated. Up to now, almost all analyses are based on the assumption of constant properties in mushy zone and solid fraction linearly with temperature or length. The validation for these assumptions, however, shows that serious error is found except some special cases. The influence of microscopic model on the macroscopic temperature profile is very small and can be ignored. But the solid fraction and average solid concentration which directly influence the quality of materials are drastically changed by the microscopic models. An approximate solution using the method of weighted residuals is also introduced and shows good agreement with the analytical solution. All calculations are performed for NH$_{4}$Cl-H$_{2}$O and Al-Cu system.

Fe-Cr-Ni강 용접금속부의 미세편석에 관한 해석 (Analysis of Microsegregation in Fe-Cr-Ni Weld Metal)

  • 박준민;박종민;안상곤;이창희;윤의박
    • Journal of Welding and Joining
    • /
    • 제16권5호
    • /
    • pp.56-66
    • /
    • 1998
  • During solidification or welding of alloys, the solute redistribution brings out microsegregation. The microsegregation causes the formation of non-equilibrium second phases, shrinkage and porosity degrading mechanical/chemical properties Therefore, it has been required to predict microsegregation quantitatively. To predict the degree of microsegregation, more exact and appropriate computer simulation technique has been actively used during last two decades. To predict the degree of microsegregation in weld metal, an advanced two dimensional model was suggested. In the new model, both primary and secondary arm regions were defined for the analysis region. The growth in the primary arm regina was assumed to be a planar for effective calculation. Especially, for the growth of a secondary arm, a simple and effective mathematical function was established to show the growing pattern, the solute diffusion in the solid phase was calculated by finite difference method (FDM). The solid-liquid interface movement was considered to be in local equilibrium state. The experiments for welding of 310S stainless steel were carried out in order to examined the reasonability and feasibility of this model. The concentration profiles of the solute predicted by this model were compared with those obtained from experimental works.

  • PDF