• Title/Summary/Keyword: Non-Dimensional Superficial Velocity

Search Result 2, Processing Time 0.017 seconds

Counter-Current Flow Limit of a Vertical Two Phase (Water/Air) Flow (상반류(물/공기) 유동한계에 관한 연구)

  • 오율권;조상진;김상녕;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.308-322
    • /
    • 1991
  • A set of experiments of Counter-Current Flow Limit(CCFL or Flooding) was performed to improve the drawbacks of Wallis' Correlation which neglects the effects of channel size, channel length, injection method and the boundary conditions at the inlet of liquid and gas phase. In these experiments using water and air, the followings were found ; (i) The effects of channel size and length were quite significant. In large tubes(D>20mm), the flooding front occurred at the bottom of the channel and when the gas flow increased the front moved upward ; however, in small tubes(D<20mm), there were no upward movement of flooding front and the flooding just occurred at the liquid inlet. (ii) The effect of water inlet device was not as significant as that of channel length though the inlet boundary conditions could affect the flow development and flooding afterward. (iii) Once the flooding front reached the inlet of water injection device, an newly reduced flow condition was set up and resulted in another flooding corresponding to the new condition.

Hydraulic Characteristics of Anaerobic Fluidized Bed Bioreactor (혐기성 유동상 반응기의 수리학적 특성)

  • Seok, Jong-Hyuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.90-96
    • /
    • 2018
  • Tracer experiments were carried out on two laboratory modes, "without media mode" and "with media mode", to examine the hydraulic characteristics of the anaerobic fluidized bed bioreactor (AFBR). For both configurations, a formula was derived for the hydraulics and data interpretation to obtain the actual characteristics of the reactor. The dispersion model is based on the assumption that carriers are non-reacting and the dispersion coefficient is constant. The model represents the one-dimensional unsteady-state concentration distribution of the non-reacting tracer in the reactors. The experimental results showed that the media increased the mixing conditions in the reactor considerably. For the reactor without media, in the range tested, the dispersion coefficient was at least an order of magnitude smaller than that of the reactor with media. Advective transport dominates and the flow pattern approaches the plug flow reactor (PFR) regime. The dispersion coefficient increased significantly as us, the superficial liquid velocity, was increased proportionally to 0.82cm/s. On the other hand, for the reactor with media, the flow pattern was in between a PFR and a completely mixed flow reactor (CMFR) regime, and the dispersion coefficient was saturated at us=0.41cm/s, remaining relatively constant, even at us=0.82cm/s. The dispersion coefficient depends strongly on the liquid Reynolds number (Re) or the particle Reynolds number (Rep) over the range tested.