• 제목/요약/키워드: Non-Carbonated material

검색결과 5건 처리시간 0.017초

CaO 화합물이 다량 함유된 비산재의 수화 특성에 관한 연구 (Hydration Characteristics of Coal-Fly Ash Containing High CaO Compound)

  • 심준수;이기강;김유택;강승구
    • 한국세라믹학회지
    • /
    • 제49권2호
    • /
    • pp.185-190
    • /
    • 2012
  • The purpose of this study was to examine a possibility that fly ash could be used as raw material for carbonation by conducting the experiment on magnetic separation and hydration of fly ash that contained a large amount of CaO composite. Wet magnetic separation experiment was performed to remove the component of magnetic substance that contained fly ash, which aimed at increasing the content of CaO in the non-magnetic domain. The selected fly ash was used for hydration experiment before the TG-DTA, XRF and XRD analyses were made to confirm the Ca component that could be carbonated. Then, the fly ash was turned to a hydrate that was favorable to dissociation of $Ca^{2+}$ ion. As a result, the magnetic separation enabled detecting the content of CaO component by up to 61 wt% in the non-magnetic domain. Since the hydrate was confirmed, it is believed that the fly ash can be used as raw material for carbonation.

Simple approach to calculate chloride diffusivity of concrete considering carbonation

  • Yoon, In-Seok
    • Computers and Concrete
    • /
    • 제6권1호
    • /
    • pp.1-18
    • /
    • 2009
  • Chloride diffusivity of concrete is a crucial material parameter for service life determination and durability designing of marine concrete. Many research works on this issue have been conducted, varying from empirical solutions obtained experimentally to image analysis, based on multi-scale modeling. One of the simple approaches is to express the chloride diffusivity of concrete by a multi-factor function, however, the influences of various factors on the chloride diffusivity are ambiguous. Furthermore, the majority of these research works have not dealt with the carbonation process of concrete, although this process affects the chloride diffusivity of concrete significantly. The purpose of this study is to establish a simple approach to calculate the chloride diffusivity of (non)carbonated concrete. The chloride diffusivity of concrete should be defined, based on engineering and scientific knowledge of cement and concrete materials. In this paper, a lot of parameters affecting the chloride diffusivity, such as the diffusivity in pore solution, tortuosity, micro-structural properties of hardened cement paste, volumetric portion of aggregate, are taken into consideration in the calculation of the chloride diffusivity of noncarbonated concrete. For carbonated concrete, reduced porosity due to carbonation is calculated and used for calculating the chloride diffusivity. The results are compared with experimental data and previous research works.

CO2 양생을 이용한 시멘트계 재료의 압축강도 발현에 관한 실험적 연구 (The experimental study on the compressive strength for cementitious material using CO2 curing)

  • 성명진;류화성;신상헌;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2014년도 춘계 학술논문 발표대회
    • /
    • pp.264-265
    • /
    • 2014
  • Currently, CO2 existed in the air usually reacts concrete, and then CaCO3 can be appeared. As time goes by, pH of concrete is decreased and corrosion of steel can be happened. This phenomenon is called carbonation. For preventing carbonation of concrete, various methods like using corrosion inhibitor, high compressive strength concrete, and enough covering depth are adopted. But these method are usually passive methods focused on corrosion of steel and have limitation on economic. Thus, as basic study for active method of carbonation, cement pastes with CO2 reactive material (γ-C2S, MgO) and GBFS were in accelerated carbonation, and the compressive strengths were measured. On the result, the compressive strength was improved better than non-carbonation. Through measuring the weight change using TG-DTA, as specimens were carbonated, according to decreasing of Ca(OH)2 and Mg(OH)2, CaCO3 and MgCO3 were increased. Therefore it can be shown that carbonation curing can be realized.

  • PDF

Water Soluble Cyclosporine Monomethoxy Poly(ethyleneglycol) Conjugates as Potential Prod rugs

  • Cho, Hoon;Chung, Yong-Seog
    • Archives of Pharmacal Research
    • /
    • 제27권6호
    • /
    • pp.662-669
    • /
    • 2004
  • The highly water-soluble monomethoxypoly(ethyleneglycol) (mPEG) prod rugs of cyciosporin A(CsA) were synthesized. These prod rugs were prepared by initially preparing intermediate in the form of carbonate at the 3'-positions of CsA with chloromethyl chloroformate, in the pres-ence of a base to provide a 3'-carbonated CsA intermediate. Reaction of the CsA intermediate with mPEG derivative in the presence of a base provides the desired water-soluble prod rugs. As a model, we chose molecular weight 5 kDa mPEG in the reaction with CsA to give water soluble prodrugs. To prove that the prod rug is decomposed in the body to produce CsA, the enzymatic hydrolysis test was conducted using human liver homogenate at $37^{\circ}C$. The prodrug was decomposed in human liver homogenate to produce the active material, CsA, and the hydrolysis half-life ($t_{1/2}$) of the prodrug, KI-306 was 2.2 minutes at $37^{\circ}C$. However, a demon-stration of non-enzymatic conversion in pH 7.4 phosphate buffer was provided by the fact that the half-life ($t_{1/2}$) is 21 hours at 37$^{\circ}C$. The hydrolysis test in rat whole blood was also conducted. The hydrolysis was seen with half-life ($t_{1/2}$) of about 9.9, 65.0, 14.2, 3.4, 2.1 9.5, and 1.6 minutes for KI-306, 309, 312, 313, 315, 316, and 317, respectively. This is the ideal for CsA prodrug. The pharmacokinetic study of the prodrug, KI-306, in comparison to the commer-cial product (Sandimmune Neoral Solution) was also carried out after single oral dose. Each rat received 7 mg/kg of CsA equivalent dose. Especially, the prodrug KI-306 exhibits higher AUC and $C_{max}$ than the conventional Neoral. The AUC and $C_{max}$ were increased nearly 1.5 fold. The kinetic value was also seen with $T_{max}$ of about 1.43 and 2.44 hours for KI-306 and Neoral, respectively.

슬래그를 클링커 혼합원료로 사용한 시멘트의 물리적 특성 (Physical Properties of Cement Using Slag as Raw Mix of Clinker)

  • 이영준;권도영;;추용식
    • 자원리싸이클링
    • /
    • 제33권3호
    • /
    • pp.12-20
    • /
    • 2024
  • 세계 시멘트 산업의 온실가스 배출량은 약 29억 톤이며, 이중 17.4~18.9억 톤이 시멘트 클링커의 주원료인 석회석으로부터 배출된다. 따라서 비탄산 CaO 원료인 슬래그류 사용이 연구되어야 하며, 이때 시멘트의 물리적 특성도 충분히 발현되어야 한다. 본 연구에서는 슬래그류 사용에 따른 혼합원료 배합 조건과 시멘트 물성을 분석하였다. 슬래그류 단독 사용 시 CaCO3 대체율은 한계를 갖으나, 혼합 슬래그 사용 시 CaCO3 대체율이 12 % 이상 증가하였다. 단독 슬래그 사용 시멘트의 압축강도는 OPC 대비 감소하였으며, 압축강도 증진을 위해 혼합원료의 LSF 및 시멘트 분말도를 상향시켰다. 분말도 상향 시멘트의 압축강도는 CaCO33 대체율 6 %까지 OPC와 유사하였으나, 9 % 이상에서는 소폭 하락하였다. 하지만 혼합 슬래그 사용 시멘트의 분말도와 LSF를 모두 상향 시, CaCO3 대체율 12 % 시멘트도 OPC와 유사한 압축강도가 발현되었다. 또한 CaCO3 대체율 12 % 시멘트의 플로우 값도 OPC와 유사하였다.