• Title/Summary/Keyword: Non White Noise

Search Result 107, Processing Time 0.022 seconds

Hybrid Filter Design for a Nonlinear System with Glint Noise (글린트잡음을 갖는 비선형 시스템에 대한 하이브리드 필터 설계)

  • Kwak, Ki-Seok;Yoon, Tae-Sung;Park, Ji-Bae;Shin, Jong-Gun
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.26-29
    • /
    • 2001
  • In a target tracking problem the radar glint noise has non-Gaussian heavy-tailed distribution and will seriously affect the target tracking performance. In most nonlinear situations an Extended Robust Kalman Filter(ERKF) can yield acceptable performance as long as the noises are white Gaussian. However, an Extended Robust $H_{\infty}$ Filter (ERHF) can yield acceptable performance when the noises are Laplacian. In this paper, we use the Interacting Multiple Model(IMM) estimator for the problem of target tracking with glint noise. In the IMM method, two filters(ERKF and ERHF) are used in parallel to estimate the state. Computer simulations of a real target tracking shows that hybrid filter used the IMM algorithm has superior performance than a single type filter.

  • PDF

Non-Local Mean based Post Processing Scheme for Performance Enhancement of Image Interpolation Method (이미지 보간기법의 성능 개선을 위한 비국부평균 기반의 후처리 기법)

  • Kim, Donghyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.3
    • /
    • pp.49-58
    • /
    • 2020
  • Image interpolation, a technology that converts low resolution images into high resolution images, has been widely used in various image processing fields such as CCTV, web-cam, and medical imaging. This technique is based on the fact that the statistical distributions of the white Gaussian noise and the difference between the interpolated image and the original image is similar to each other. The proposed algorithm is composed of three steps. In first, the interpolated image is derived by random image interpolation. In second, we derive weighting functions that are used to apply non-local mean filtering. In the final step, the prediction error is corrected by performing non-local mean filtering by applying the selected weighting function. It can be considered as a post-processing algorithm to further reduce the prediction error after applying an arbitrary image interpolation algorithm. Simulation results show that the proposed method yields reasonable performance.

Monte Carlo analysis of earthquake resistant R-C 3D shear wall-frame structures

  • Taskin, Beyza;Hasgur, Zeki
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.371-399
    • /
    • 2006
  • The theoretical background and capabilities of the developed program, SAR-CWF, for stochastic analysis of 3D reinforced-concrete shear wall-frame structures subject to seismic excitations is presented. Incremental stiffness and strength properties of system members are modeled by extended Roufaiel-Meyer hysteretic relation for bending while shear deformations for walls by Origin-Oriented hysteretic model. For the critical height of shear-walls, division to sub-elements is performed. Different yield capacities with respect to positive and negative bending, finite extensions of plastic hinges and P-${\delta}$ effects are considered while strength deterioration is controlled by accumulated hysteretic energy. Simulated strong motions are obtained from a Gaussian white-noise filtered through Kanai-Tajimi filter. Dynamic equations of motion for the system are formed according to constitutive and compatibility relations and then inserted into equivalent It$\hat{o}$-Stratonovich stochastic differential equations. A system reduction scheme based on the series expansion of eigen-modes of the undamaged structure is implemented. Time histories of seismic response statistics are obtained by utilizing the computer programs developed for different types of structures.

Performance Analysis of Adaptive Collaborative Communications in Wireless Networks (무선네트워크에서 적응형 협력통신의 성능 분석에 관한 연구)

  • Khuong Ho Van;Kong Hyung-Yun;Jeong Hwi-Jae
    • The KIPS Transactions:PartC
    • /
    • v.13C no.6 s.109
    • /
    • pp.749-756
    • /
    • 2006
  • Broadcast nature of wireless medium and path-loss reduction create a favourable condition for collaborative communications (CC) among single-antenna users to gain the powerful benefits of multi-antenna system without the demand for physical arrays. This paper proposes a CC strategy adapting to the propagation environment changes by optimizing the transmit signal amplification factors to simplify the structure of maximum likelihood (ML) detector and to obtain the minimum error probability as well. The closed-form BER expression was also derived and compared to the simulation results to evaluate the performance of the suggested solution. A variety of numerical results revealed the cooperation significantly outperforms non-cooperative counterpart under flat Rayleigh fading channel plus AWGN (Additive White Gaussian Noise).

A Study on Edge Detection using Standard Deviation of Local Masks (국부 마스크의 표준편차를 이용한 에지 검출에 관한 연구)

  • Lee, Chang-Young;An, Young-Joo;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.782-784
    • /
    • 2013
  • As digital image processing technologies are developing, edges are being utilized in various areas. In the existing edge detection methods, there are mask methods which utilize Sobel, Prewitt, Roberts, Laplacian operator etc. To realize these existing edge detection methods is simple. But, in case that AWGN(additive white Gaussian noise) added images are processed, edge detection characteristics are slightly insufficient. Therefore, the edge detection algorithm using the standard deviation of local mask was suggested in this paper to compensate for the drawbacks in the existing detection methods and the suggested algorithm in AWGN environments showed excellent edge detection characteristics.

  • PDF

Detection algorithm for DAA using Decision Directed method in MB-OFDM (MB-OFDM에서 충돌회피를 위한 결정궤환방식의 간섭신호 검출 기법)

  • Oh, Woo-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.315-321
    • /
    • 2011
  • Since the MB-OFDM(Multi-Band Orthogonal Frequency Division Multiplexing) is an ultra wideband communication system operated on ISM(Industrial, Scientific and Medical) band, DAA(Detect-And-Avoid) is required for co-existence with the other communication service. In this paper we propose the new detection algorithm based on decision-feedback, which shows faster convergence time and less complexity than previous works. The proposed algorithm detects interference above -20dB in AWGN(Additive White Gaussian Noise) and LOS(Line-Of-Sight) channel, and close to AWGN in non-LOS channel under appropriate channel clipping.

A Modified Soft Output Viterbi Algorithm for Quantized Channel Outputs

  • Lee Ho Kyoung;Lee Kyoung Ho
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.663-666
    • /
    • 2004
  • In this paper, a modified-SOYA (soft output viterbi algorithm) of turbo codes is proposed for quantized channel receiver filter outputs. We derive optimum branch values for the Viterbi algorithm. Here we assume that received filter outputs are quantized and the channel is additive white Gaussian noise. The optimum non-uniform quantizer is used to quantize channel receiver filter outputs. To compare the BER (bit error rate) performance we perform simulations for the modified SOYA algorithm and the general SOYA

  • PDF

New BER Expression of Hierarchical M-ary Phase Shift Keying

  • Lee, Jae-Yoon;Cho, Kyong-Kuk;Yoon, Dong-Weon
    • ETRI Journal
    • /
    • v.29 no.6
    • /
    • pp.707-715
    • /
    • 2007
  • In-phase/quadrature (I/Q) imbalances, which are generated by non-ideal transceiver components, are inevitable physical phenomena that cause the performance of practical communication systems to be degraded. In this paper, we provide a new closed-form expression for the bit error rate of hierarchical M-ary phase shift keying with I/Q phase and amplitude imbalances and analyze the effect of I/Q imbalances on BER performance over an additive white Gaussian noise channel.

  • PDF

A Residual Echo and Noise Reduction Scheme with Linear Prediction for Hands-Free Telephony (핸즈프리 전화기를 위한 선형 예측기를 이용한 잔여반향 및 잡음 제거 구조)

  • Hwang, Kyung-Rok;Son, Kyung-Sik;Kim, Hyun-Tae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.454-460
    • /
    • 2009
  • In this paper, we propose a residual echo and noise reduction scheme by using linear predictor for hands-free telephony applications. The proposed scheme whitens residual echo by the linear prediction during the non double-talk. But whitened residual echo signal still has speech characteristics. In this scheme, the whitened residual echo signal is more whitened by using the power of the linear prediction error signal and the linear predicted signal. After whitening process, near-end speech and ambient noise is present during double-talk but white noise will appear during non double-talk situation. By linearly predicting again the combined signal of the near-end speech and the whitened signal, the ambient noise is removed. Through computer simulation, it is shown that the proposed method performs well at the side of AIC (acoustic interference cancellation).

On Additive Signal Dependent Gaussian Noise Channel Capacity for NOMA in 5G Mobile Communication

  • Chung, Kyuhyuk
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.37-44
    • /
    • 2020
  • The fifth generation (5G) mobile communication has been commercialized and the 5G applications, such as the artificial intelligence (AI) and the internet of things (IoT), are deployed all over the world. The 5G new radio (NR) wireless networks are characterized by 100 times more traffic, 1000 times higher system capacity, and 1 ms latency. One of the promising 5G technologies is non-orthogonal multiple access (NOMA). In order for the NOMA performance to be improved, sometimes the additive signal-dependent Gaussian noise (ASDGN) channel model is required. However, the channel capacity calculation of such channels is so difficult, that only lower and upper bounds on the capacity of ASDGN channels have been presented. Such difficulties are due to the specific constraints on the dependency. Herein, we provide the capacity of ASDGN channels, by removing the constraints except the dependency. Then we obtain the ASDGN channel capacity, not lower and upper bounds, so that the clear impact of ASDGN can be clarified, compared to additive white Gaussian noise (AWGN). It is shown that the ASDGN channel capacity is greater than the AWGN channel capacity, for the high signal-to-noise ratio (SNR). We also apply the analytical results to the NOMA scheme to verify the superiority of ASDGN channels.