• 제목/요약/키워드: Non Uniformity Correction

검색결과 60건 처리시간 0.025초

A Wide Dynamic Range NUC Algorithm for IRCS Systems

  • Cai, Li-Hua;He, Feng-Yun;Chang, Song-Tao;Li, Zhou
    • Journal of the Korean Physical Society
    • /
    • 제73권12호
    • /
    • pp.1821-1826
    • /
    • 2018
  • Uniformity is a key feature of state-of-the-art infrared focal planed array (IRFPA) and infrared imaging system. Unlike traditional infrared telescope facility, a ground-based infrared radiant characteristics measurement system with an IRFPA not only provides a series of high signal-to-noise ratio (SNR) infrared image but also ensures the validity of radiant measurement data. Normally, a long integration time tends to produce a high SNR infrared image for infrared radiant characteristics radiometry system. In view of the variability of and uncertainty in the measured target's energy, the operation of switching the integration time and attenuators usually guarantees the guality of the infrared radiation measurement data obtainted during the infrared radiant characteristics radiometry process. Non-uniformity correction (NUC) coefficients in a given integration time are often applied to a specified integration time. If the integration time is switched, the SNR for the infrared imaging will degenerate rapidly. Considering the effect of the SNR for the infrared image and the infrared radiant characteristics radiometry above, we propose a-wide-dynamic-range NUC algorithm. In addition, this essasy derives and establishes the mathematical modal of the algorithm in detail. Then, we conduct verification experiments by using a ground-based MWIR(Mid-wave Infared) radiant characteristics radiometry system with an Ø400 mm aperture. The experimental results obtained using the proposed algorithm and the traditional algorithm for different integration time are compared. The statistical data shows that the average non-uniformity for the proposed algorithm decreased from 0.77% to 0.21% at 2.5 ms and from 1.33% to 0.26% at 5.5 ms. The testing results demonstrate that the usage of suggested algorithm can improve infrared imaging quality and radiation measurement accuracy.

SPECT/CT에서 CT를 기반으로 한 Attenuation Correction의 정확도 평가 (Accuracy Evaluation of CT-Based Attenuation Correction in SPECT with Different Energy of Radioisotopes)

  • 김승정;김재일;김정수;김태엽;김수미;우재룡;이재성;김유경
    • 핵의학기술
    • /
    • 제17권1호
    • /
    • pp.25-29
    • /
    • 2013
  • SPECT/CT에서 140 kVp를 사용하는 CT 평균 에너지를 60 keV로 가정하고, CT 평균 에너지와 $^{201}Tl,\;^{99m}Tc,\;^{131}I$의 각기 다른 3가지 에너지를 서로 비교하여 감쇠 보정과 산란 보정의 정확도를 평가하고자 한다. Cylindrical phantom 에 $^{201}Tl$은 55.5 MBq (2 mCi), $^{99m}Tc$은 281.2 MBq (7.6 mCi), $^{131}I$은 96.2 MBq (2.66 mCi)를 주입하고 장비는 GE사의 Hawkeye 4 SPECT/CT를 사용하였다. 모든 SPECT는 frame 당 약 50 kcounts, CT는 140 kVp, 2.5 mA로 하여 영상을 얻었다. 영상은 OSEM (iteration: 2, subset: 10)으로 재구성하였고, 이때 감쇠 보정 적용 유무, 산란 보정 적용 유무를 서로 비교했다. 전체 phantom 영상의 uniformity를 모두 측정하고, center to peripheral ratio (CPR)를 구하여 평가하였다. $^{201}Tl$$^{99m}Tc$의 재구성 영상에 감쇠 보정만 적용한 경우 약 10-20% 정도 uniformity가 향상되지만, SC만 적용한 경우에는 약 2% 감소하였다. $^{131}I$의 uniformity는 감쇠 보정과 산란 보정을 모두 적용한 경우에 조금 향상되었다. 또한 CPR은 $^{201}Tl$$^{99m}Tc$에서 감쇠 보정만 적용한 경우에 1에 가까웠고, $^{131}I$의 영상에서는 감쇠 보정만 적용한 경우 1에 가깝지 않은 결과가 나타났다. SPECT/CT에서 140 kVp의 CT 평균 에너지를 60 keV이라고 가정했을 때, 대체적으로 에너지가 낮은 $^{201}Tl$$^{99m}Tc$은 감쇠 보정만 적용한 경우에 uniformity가 향상되었고, 에너지가 높은 $^{131}I$ 은 감쇠 보정과 산란 보정을 모두 적용한 경우에만 향상되었다.

  • PDF

LED TV 패널 밝기 균일화 보정 시스템 개발 (Development of LED TV Panel Brightness Uniformity Correction System)

  • 박제성;이원우;;주효남;김준식
    • 제어로봇시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.382-388
    • /
    • 2016
  • When Flat Panel Display (FPD) is made with backlight module, such as LED TV, it inherently suffers from the non-uniform backlight luminance problem that results in un-even brightness distribution throughout the TV screen. If the luminance of each pixel location of a TV screen as a function of the driving voltage can be measured, it can be used to compensate the non-uniformity of the backlight module. We use a carefully calibrated imaging system to take pictures of a TV screen at different levels of brightness and generate the compensation functions for the driving circuitry to correct the luminance level at each pixel location. Making use of the fact that the luminance of the screen is normally brightest at around the center of the screen and gradually decreases toward the border of the screen, the luminance of the whole TV screen is approximated by a mathematical function of the pixel locations. The parameters of the function are computed in the least square sense by the values of both the pixel luminance sent from the driving circuit and the grayscale value measured from the image taken by the imaging system. To justify the correction system, a simple second order polynomial function is used to approximate the luminance across the screen. When the driving circuit voltage is corrected according to the measured function, the variance of the screen luminance is reduced to one tenth of the one measured from the un-corrected TV screen.

CCD Pixel Correction Table Generation for MSC

  • Kim Young Sun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Paik Hong-Yul
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.471-474
    • /
    • 2004
  • Not all CCD pixels generate uniform value for the uniform radiance due to the different process of manufacture and each pixel characteristics. And the image data compression is essential in the real time image transmission because of the high line rate and the limited RF bandwidth. This pixel's nonuniformity and the loss compression make CCD pixel correction necessary in on-orbit condition. In the MSC system, the NUC unit, which is a part of MSC PMU, is charge of the correction for CCD each pixel. The correction is performed with the gain and the offset table for the each pixel and the each TDI mode. These correction tables are generated and programmed in the PMU Flash memory through the various image data tests at the ground test. Besides, they can be uploaded from ground station after onorbit calibration. This paper describes the principle of the table generation and the test way of the non-uniformity after NUC

  • PDF

INTRODUCTION OF NUC ALGORITHM IN ON-BOARD RELATIVE RADIOMERIC CALIBRATION OF KOMPSAT-2

  • Song, J.H.;Choi, M.J.;Seo, D.C.;Lee, D.H.;Lim, H.S.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.504-507
    • /
    • 2007
  • The KOMPSAT-2 satellite is a push-broom system with MSC (Multi Spectral Camera) which contains a panchromatic band and four multi-spectral bands covering the spectral range from 450nm to 900nm. The PAN band is composed of six CCD array with 2528 pixels. And the MS band has one CCD array with 3792 pixels. Raw imagery generated from a push-broom sensor contains vertical streaks caused by variability in detector response, variability in lens falloff, pixel area, output amplifiers and especially electrical gain and offset. Relative radiometric calibration is necessary to account for the detector-to-detector non-uniformity in this raw imagery. Non-uniformity correction (NUC) is that the process of performing on-board relative correction of gain and offset for each pixel to improve data compressibility and to reduce banding and streaking from aggregation or re-sampling in the imagery. A relative gain and offset are calculated for each detector using scenes from uniform target area such as a large desert, forest, sea. In the NUC of KOMPSAT-2, The NUC table for each pixel are divided as HF NUC (high frequency NUC) and LF NUC (low frequency NUC) to apply to few restricted facts in the operating system ofKOMPSAT-2. This work presents the algorithm and process of NUC table generation and shows the imagery to compare with and without calibration.

  • PDF

New In-Orbit Pixel Correction Method

  • Kim Youngsun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Chang Young-Jun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.604-607
    • /
    • 2005
  • All CCD pixels do not react uniformly even if the light of same radiance enters into the camera. This comes from the different camera optical characteristics, the read-out characteristics, the pixel own characteristics and so on. Usually, the image data of satellite camera can be corrected by the various image-processing methods in the ground. However, sometimes, the in-orbit correction is needed to get the higher quality image. Especially high frequency pixel correction in the middle of in-orbit mission is needed because the in-orbit data compression with the high frequency loss is essential to transmit many data in real time due to the limited RF bandwidth. In this case, this high frequency correction can prevent have to have any unnecessary high frequency loss. This in-orbit correction can be done by the specific correction table, which consists of the gain and the offset correction value for each pixel. So, it is very important to get more accurate correction table for good correction results. This paper shows the new algorithm to get accurate pixel correction table. This algorithm shall be verified theoretically and also verified with the various simulation and the test results.

  • PDF

Non Uniformity Error of MSC (Multi Spectral Camera) System

  • Jang YoungJun;Yong SangSoon;Kang KeumSil;Kim JungAh;Kang SungDuk;Youn HeongSik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.432-435
    • /
    • 2004
  • MSC (Multi Spectral Camera) system is a remote sensing payload to obtain high resolution ground image. In this application, uniformity characteristic is important as well as GSD (Ground Resolved Distance) and SNR (Signal to Noise Ratio). MSC image chain is consisted of OM (Optical Module), CCD, Video processor, NUC and DCSU (Data Compression and Storage Unit). Each block makes and corrects MSC's nonuniformity response. This paper shows the cause of nonuniformity error and the correction scheme of MSC system from the electronic point of view.

  • PDF

TEC-less 비냉각 열영상 검출기용 소형카메라 모듈 개발 (Small Camera Module for TEC-less Uncooled Thermal Image)

  • 김종호
    • 대한임베디드공학회논문지
    • /
    • 제12권2호
    • /
    • pp.97-103
    • /
    • 2017
  • Thermal imaging is mainly used in military equipment required for night observation. In particular, technologies of uncooled thermal imaging detectors are being developed as applied to low-cost night observation system. Many system integrators require different specifications of the uncooled thermal imaging camera but their development time is short. In this approach, EOSYSTEM has developed a small size, TEC-less uncooled thermal imaging camera module with $32{\times}32mm$ size and low power consumption. Both domestic detector and import detector are applied to the EOSYSTEM's thermal imaging camera module. The camera module contains efficient infrared image processing algorithms including : Temperature compensation non-uniformity correction, Bad/Dead pixel replacement, Column noise removal, Contrast/Edge enhancement algorithms providing stable and low residual non-uniformity infrared image.

반복적인 방법을 이용한 임의의 DR detector 위치에서의 flat field correction 방법 연구 (An Iterative Method for Flat-Field Correction of Digital Radiography When Detector is at Any Position)

  • 김도일;이형구;김성현;박대섭;최보영;서태석
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2004년도 제29회 추계학술대회 발표논문집
    • /
    • pp.64-66
    • /
    • 2004
  • 디지털 래디오그래피 시스템을 이용하여 환자를 진료하기 위해서는 전처리 과정을 통해 DR 디텍터의 불량화소와 선을 제거하고 offset과 X선의 불균질성을 제거해야만 한다. 불균질성을 제거하기 위해 X-선의 flat field 영상이 필요하며 이는 X선관의 focal spot과 디텍터의 중심과 일치시켜 X선을 디텍터에 수직으로 입사시켜 얻는다. 이러한 영상 촬영구조는 환자를 촬영할 때에도 그대로 유지된다. 하지만 방사선 촬영 기법 중 여러 가지 요인으로 디텍터의 중심과 X선관의 중심을 일치시키지 않거나 디텍터를 기울여 촬영하는 방법들이 있다. 본 연구에서는 디텍터가 기울어져 있거나 또는 임의의 위치에서의 flat field correction 방법의 영향을 분석하고, 새로운 알고리즘을 이용하여 그 영향을 줄이고자 하였다. 본 연구의 결과로 DR 디텍터에서 X선의 flat field를 최대한 보장할 수 있을 것이다.

  • PDF

Performance Improvement Technique of Long-range Target Information Acquisition for Airborne IR Camera

  • Yang, Hyun-Jin
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권7호
    • /
    • pp.39-45
    • /
    • 2017
  • In this paper, we propose three compensation methods to solve problems in high-resolution airborne infrared camera and to improve long-range target information acquisition performance. First, image motion and temporal noise reduction technique which is caused by atmospheric turbulence. Second, thermal blurring image correction technique by imperfect performance of NUC(Non Uniformity Correction) or raising the internal temperature of the camera. Finally, DRC(Dynamic Range Compression) and flicker removing technique of 14bits HDR(High Dynamic Range) infrared image. Through this study, we designed techniques to improve the acquisition performance of long-range target information of high-resolution airborne infrared camera, and compared and analyzed the performance improvement result with implemented images.