• Title/Summary/Keyword: Nominal Shear Strength

Search Result 74, Processing Time 0.023 seconds

The Development of a 100 Mpa Class Ultra-high Strength Centrifugal Molded Square Beam Design and Manufacturing Technology (100MPa급 초고강도 원심성형 각형보의 설계 및 제작기술 개발 )

  • Doo-Sung Lee;Sung-Jin Kim;Jeong-Hoi Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.4
    • /
    • pp.11-22
    • /
    • 2023
  • In this study, a structural concrete square beam was developed using the centrifugal molding technique. In order to secure the bending stiffness of the cross section, the hollow rate of the cross section was set to 10% or less. Instead of using the current poor mixture of concrete, a special formwork for producing a centrifugal square beam was manufactured, and a concrete mixing ratio with a high slump (150-200) and a design strength of 100 MPa or more was developed and applied. The produced centrifugally formed rectangular beams were subjected to performance tests according to the standard bending and shear test standards for centrifugally formed members. The static load test results for the four specimens exceeded both the nominal bending strength and nominal shear strength, which are design values through structural design, proving the structural reliability of the ultra-high-strength centrifugally formed square beam.

A Study on Flexural and Shear Behavior of the Structure with Steel Plate Concrete to Reinforced Concrete Member's Connection (철근 콘크리트와 강판 콘크리트 간 이질접합부로 구성된 구조물의 휨 및 전단거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Lee, Jong Bo;Won, Deok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.267-275
    • /
    • 2012
  • This paper describes the experimental study on the structural behavior of the joint plane between a RC(Reinforced Concrete) wall and a SC(Steel Plate Concrete) wall under out-of plane flexural loads and in-plane shear loads. The test specimens were produced with L and I shape to assess efficiently flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquake, cyclic loading tests were carried out. As results of the out-of plane flexural tests, ductile failure mode of vertical bars was shown under a push load and the failure load was more than nominal strength of the specimen. And the latter test was performed to verify the variation which was composition presence of horizontal bars in the SC member. The test results showed that capacity of the specimens was more than their nominal strength regardless of composition presence of horizontal bars.

Compression Strength Size Effect on Carbon-PEEK Fiber Composite Failing by Kink Band Propagation

  • Kim, Jang-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.57-68
    • /
    • 2000
  • The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of novel geometrically similar carbon-PEEK specimens, with notches slanted so as to lead to a pure kink band (without shear or splitting cracks), are conducted. The specimens are rectangular strips of widths 15.875, 31.75. and 63.5 mm (0.625, 1.25 and 2.5 in and gage lengths 39.7, 79.375 and 158.75 mm (1.563, 3.125 and 6.25 in.). They reveal the existence of a strong (deterministic. non-statistical) size effect. The doubly logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bazant This law represents a gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or strength criteria), to an asymptote of slope -1/2 (characteristic of linear elastic fracture mechanics. LEFM) . The size effect law for notched specimens permits easy identification of the fracture energy of the kink bandand the length of the fracture process zone at the front of the band solely from the measurements of maximum loads. Optimum fits of the test results by the size effect law are obtained, and the size effect law parameters are then used to identify the material fracture characteristics, Particularly the fracture energy and the effective length of the fracture process zone. The results suggest that composite size effect must be considered in strengthening existing concrete structural members such as bridge columns and beams using a composite retrofitting technique.

  • PDF

Experimental investigation of shear connector behaviour in composite beams with metal decking

  • Qureshi, Jawed;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.475-494
    • /
    • 2020
  • Presented are experimental results from 24 full-scale push test specimens to study the behaviour of composite beams with trapezoidal profiled sheeting laid transverse to the beam axis. The tests use a single-sided horizontal push test setup and are divided into two series. First series contained shear loading only and the second had normal load besides shear load. Four parameters are studied: the effect of wire mesh position and number of its layers, placing a reinforcing bar at the bottom flange of the deck, normal load and its position, and shear stud layout. The results indicate that positioning mesh on top of the deck flange or 30 mm from top of the concrete slab does not affect the stud's strength and ductility. Thus, existing industry practice of locating the mesh at a nominal cover from top of the concrete slab and Eurocode 4 requirement of placing mesh 30 mm below the stud's head are both acceptable. Double mesh layer resulted in 17% increase in stud strength for push tests with single stud per rib. Placing a T16 bar at the bottom of the deck rib did not affect shear stud behaviour. The normal load resulted in 40% and 23% increase in stud strength for single and double studs per rib. Use of studs only in the middle three ribs out of five increased the strength by 23% compared to the layout with studs in first four ribs. Eurocode 4 and Johnson and Yuan equations predicted well the stud strength for single stud/rib tests without normal load, with estimations within 10% of the characteristic experimental load. These equations highly under-estimated the stud capacity, by about 40-50%, for tests with normal load. AISC 360-16 generally over-estimated the stud capacity, except for single stud/rib push tests with normal load. Nellinger equations precisely predicted the stud resistance for push tests with normal load, with ratio of experimental over predicted load as 0.99 and coefficient of variation of about 8%. But, Nellinger method over-estimated the stud capacity by about 20% in push tests with single studs without normal load.

Block Shear Behavior of Cold-Formed Duplex Stainless Steel (STS329FLD) Welded Connection with Base Metal Fracture (냉간성형 듀플렉스계 스테인리스강(STS329FLD) 용접접합부 모재 블록전단파단 거동)

  • Hwang, BoKyung;Kim, TaeSoo
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.4
    • /
    • pp.157-165
    • /
    • 2019
  • Recently, lean duplex stainless steel, STS329FLD with less nickel (reduced to 0.5~1.5%) has been developed as a substitute of austenitic stainless steel (8%~10.5% nickel in STS304) and included in Korean standards (KS). This paper investigates the block shear behavior of cold-formed duplex stainless steel (STS329FLD, nominal plate thickness of 1.5mm) fillet-welded connection with base metal fracture. Main variables are weld lengths in the longitudinal and the transverse directions of applied force ranged from 20mm to 50mm. As a result, specimens failed by typical block shear facture (the combination of gross section tensile fracture and shear fracture or shear yielding) and ultimate strength of the specimens got higher with the increase of weld length. Block shear fracture strengths predicted by current design specifications (KBC2016/AISC2016 and EC3) and existing proposed equations for welded connections by Topkaya, Oosterhof & Driver and Lee et al. were compared with test strengths. KBC2016/AISC2016 and EC3 design specifications underestimated block shear strength of STS329FLD welded connections by on average 24%, 29%, respectively and Oosterhof & Driver, Topkaya and Lee et al's equations overestimated the ultimate strength of the welded connection by the range of 3% to 44%.

Flexural Capacity of the Composite Beam using Angle as a Shear Connector (앵글을 전단연결재로 사용하는 합성보의 휨성능)

  • Kim, Young Ju;Bae, Jae Hoon;Ahn, Tae Sang;Choi, Jong Gwon
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.63-75
    • /
    • 2015
  • In this study, Composite beam flexural capacity was investigated experimentally using angle as a shear connector. The main experimental parameters are the size and the spacing of the angle and the overall behavior of before and after composite. Also, the composite beam bending performance when it used with hollow PC slab and the general RC slab was compared. When determining that it synthetically, the flexural capacity of the composite beam with angle shear connector estimated 25% to 55% more strength than the nominal strength. Effects of strength parameters of composite beam by angles shear connector are size and spacing of the angle. As expected, the larger and the narrower spacing of the angles, the more strength the composite beam have. In addition, the performance of the composite beam with a hollow slab was well demonstrated by the test.

Seismic Behavior of RC Beam-Column Exterior Joints with Unbonded Tendons and High Strength Concrete (비부착 강연선과 고강도 콘크리트를 적용한 철근콘크리트 외부 접합부의 내진 거동)

  • Kwon, Byung Un;Kang, Thomas H.-K.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.283-292
    • /
    • 2015
  • In the moment frame subjected to earthquake loads, beam-column joint is structurally important for ductile behavior of a system. ACI Committee 352 proposed guidelines for designing beam-column joint details. The guidelines, however, need to be updated because of the lack of data regarding several factors that may improve the performance of joints. The purpose of this study is to investigate the seismic performance of reinforced concrete exterior joints with high-strength materials and unbonded tendons. Three specimens with different joint shear demand-to-strength ratios were constructed and tested, where headed bars were used to anchor the beam bars into the joint. All specimens showed satisfactory seismic behavior including moment strength of 1.3 times the nominal moment, ductile performance (ductility factor = at least 2.4), and sufficiently large dissipated energy.

The effects of consolidation time on the strength and failure behavior of freshwater ice rubble

  • Shayanfar, Hamid;Bailey, Eleanor;Pritchett, Robert;Taylor, Rocky
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.403-412
    • /
    • 2018
  • Medium-scale tests were conducted to measure and observe the strength and failure behavior of freshwater ice rubble. A custom box measuring $3.05m{\times}0.94m{\times}0.94m$, with Plexiglas walls was built so that failure mechanisms could be observed. Ice rubble beams of nominal thickness 50 cm were produced by placing randomly sized ice pieces into the box filled with water at its freezing temperature. After the specified consolidation time, ranging between 0.2 and 70.5 h, the ice rubble beam was deformed by pushing a platen vertically downwards though the center of the beam until failure. For consolidation times less than 4 h, the ice beam failed progressively and tended to fail by shearing on macroscopic scale. At times greater than 4 h the beam failed by bending. The change in failure behaviour has been attributed to the degree of bonding between ice blocks.

Performance of connection of Waffle Shape Precast Prestressed Concrete Slab Panels (와플(Waffle) 형상을 가지는 PC 패널의 접합 성능)

  • Heo, Seok-Jae;Kim, Hyeon-Jin;Ryu, Han-Gook;Choi, Kyoung-Kyu;Cho, Seung-Ho;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.305-308
    • /
    • 2008
  • This paper presents the results of an experimental study carried out Prestressed Concrete Slab System of WAffle Shape(WAS), was perfomed in order to inverstigate it connection shear behavior according to primary paramaters: connection interval, filling matarial. Specimen is produced in Precast Concrete factories and it comprised one WAS panel and two half WAS panels and then it is filled with packing. Within the ranges of the parameters of the connection details used in this test, connections can develop greater shear strength than the nominal shear strength and the design service load for parking structures.

  • PDF

Connection Tests for Cold-Formed Steel Wall Panels (냉간성형강 벽체패널의 연결부실험)

  • Lee, Young-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.739-746
    • /
    • 2014
  • The objective of this test series was to determine shear load per unit length which causes a unit slip in the fastener joint. The shear load is one of major factors which reflect partial composite action for cold-formed steel wall stud panels. Test method used were based on the methods presented in the 1962 AISI Specification. According to the comparison with experimental strength, it is seen that the shear loads used in nominal axial strength predictions made acceptable results.