• Title/Summary/Keyword: Noisy Group Testing

Search Result 3, Processing Time 0.018 seconds

Performance Analysis of Noisy Group Testing for Diagnosis of COVID-19 Infection (코로나19 진단을 위한 잡음 그룹검사의 성능분석)

  • Seong, Jin-Taek
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.117-123
    • /
    • 2022
  • Currently the number of COVID-19 cases is increasing rapidly around the world. One way to restrict the spread of COVID-19 infection is to find confirmed cases using rapid diagnosis. The previously proposed group testing problem assumed without measurement noise, but recently, false positive and false negative cases have occurred during COVID-19 testing. In this paper, we define the noisy group testing problem and analyze how much measurement noise affects the performance. In this paper, we show that the group testing system should be designed to be less susceptible to measurement noise when conducting group testing with a low positive rate of COVID-19 infection. And compared with other developed reconstruction algorithms, our proposed algorithm shows superior performance in noisy group testing.

A Case Study of the Development of Standard Production Information System in TFT-LCD Factory (TFT-LCD 공장의 제조 기준정보 자동 산출 시스템 구축 사례)

  • Jeong In-Jae;Lee Young-Su
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.1
    • /
    • pp.41-48
    • /
    • 2005
  • In this paper, we propose a systematic procedure to determine standard time and cycle time in a TFT-LCD factory. The proposed procedure mainly consists of data preprocessing, hypothesis testing and Group technology. Data preprocessing extracts relevant data from large on-line data sets by eliminating corrupt and noisy data. Hypothesis test techniques have been used to determine whether the standard information has been changed. Also, Group technology has been applied to generate standard information for newly developed products. The proposed procedure has been successfully applied to the production information system of a TFT-LCD factory in Korea.

A GMDH-based estimation model for axial load capacity of GFRP-RC circular columns

  • Mohammed Berradia;El Hadj Meziane;Ali Raza;Mohamed Hechmi El Ouni;Faisal Shabbir
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.161-180
    • /
    • 2023
  • In the previous research, the axial compressive capacity models for the glass fiber-reinforced polymer (GFRP)-reinforced circular concrete compression elements restrained with GFRP helix were put forward based on small and noisy datasets by considering a limited number of parameters portraying less accuracy. Consequently, it is important to recommend an accurate model based on a refined and large testing dataset that considers various parameters of such components. The core objective and novelty of the current research is to suggest a deep learning model for the axial compressive capacity of GFRP-reinforced circular concrete columns restrained with a GFRP helix utilizing various parameters of a large experimental dataset to give the maximum precision of the estimates. To achieve this aim, a test dataset of 61 GFRP-reinforced circular concrete columns restrained with a GFRP helix has been created from prior studies. An assessment of 15 diverse theoretical models is carried out utilizing different statistical coefficients over the created dataset. A novel model utilizing the group method of data handling (GMDH) has been put forward. The recommended model depicted good effectiveness over the created dataset by assuming the axial involvement of GFRP main bars and the confining effectiveness of transverse GFRP helix and depicted the maximum precision with MAE = 195.67, RMSE = 255.41, and R2 = 0.94 as associated with the previously recommended equations. The GMDH model also depicted good effectiveness for the normal distribution of estimates with only a 2.5% discrepancy from unity. The recommended model can accurately calculate the axial compressive capacity of FRP-reinforced concrete compression elements that can be considered for further analysis and design of such components in the field of structural engineering.