• Title/Summary/Keyword: Noise-Robustness

Search Result 558, Processing Time 0.021 seconds

Performance Improvement of SE-MMA Adaptive Equalization algorithm by Selective Updating (Selective Updating에 의한 SE-MMA 적응 등화 알고리즘의 성능 개선)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.101-106
    • /
    • 2016
  • This paper proposes the SU-SE-MMA algorithm which applying the concept of selective updaing to the SE-MMA that is possible to reduce the intersymbol interference due to distortion occurred at the channel when transmit the nonconstant modulus 16-QAM signal. The SE-MMA emerged for the simplifying the computational operation from the current MMA adaptation algorithm, then it's has the fast convergence speed and has a problem of increase the residual component in the steady state. The SU-SE-MMA performs the selectively tap updating when the distance of equalizer output and specified transmit signal point is greater than the given threshold value and tap updaing does not occurred in the small distance. By this selective updating process, it is possible to more reduction in the computational operation in the propose algorithm. The improved adaptive equalization performance of SU-SE-MMA like as the equalizer output signal constellation, residual isi, MD, SER were confirmed by computer simulation compared to SE-MMA. As a result of simulation, the AV-SE-MMA has better performance in output signal constellation, residual isi and MD compared to the SE-MMA, but it was confirmed that the AV-SE-MMA has similar in the SER performance that means the robustness to the noise.

Installation of Very Broadband Seismic Stations to Observe Seismic and Cryogenic Signals, Antarctica (남극 지진 및 빙권 신호 관측을 위한 초광대역 지진계 설치)

  • Lee, Won-Sang;Park, Yong-Cheol;Yun, Suk-Young;Seo, Ki-Weon;Yee, Tae-Gyu;Choe, Han-Jin;Yoon, Ho-Il;Chae, Nam-Yi
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.144-149
    • /
    • 2012
  • Korea Polar Research Institute (KOPRI) has successfully installed two autonomous very broadband three-component seismic stations at the King George Island (KGI), Antarctica, during the 24th KOPRI Antarctic Summer Expedition (2010 ~ 2011). The seismic observation system is originally designed by the Incorporated Research Institutions for Seismology Program for Array Seismic Studies of the Continental Lithosphere Instrument Center, which is fully compatible with the Polar Earth Observing Network seismic system. The installation is to achieve the following major goals: 1. Monitoring local earthquakes and icequakes in and around the KGI, 2. Validating the robustness of seismic system operation under harsh environment. For further intensive studies, we plan to move and install them adding a couple more stations at ice shelf system, e.g., Larsen Ice Shelf System, Antarctica, in 2013 to figure out ice dynamics and physical interaction between lithosphere and cryosphere. In this article, we evaluate seismic station performance and characteristics by examining ambient noise, and provide operational system information such as frequency response and State-Of-Health information.

A Digital Phase-locked Loop design based on Minimum Variance Finite Impulse Response Filter with Optimal Horizon Size (최적의 측정값 구간의 길이를 갖는 최소 공분산 유한 임펄스 응답 필터 기반 디지털 위상 고정 루프 설계)

  • You, Sung-Hyun;Pae, Dong-Sung;Choi, Hyun-Duck
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.591-598
    • /
    • 2021
  • The digital phase-locked loops(DPLL) is a circuit used for phase synchronization and has been generally used in various fields such as communication and circuit fields. State estimators are used to design digital phase-locked loops, and infinite impulse response state estimators such as the well-known Kalman filter have been used. In general, the performance of the infinite impulse response state estimator-based digital phase-locked loop is excellent, but a sudden performance degradation may occur in unexpected situations such as inaccuracy of initial value, model error, and disturbance. In this paper, we propose a minimum variance finite impulse response filter with optimal horizon for designing a new digital phase-locked loop. A numerical method is introduced to obtain the measured value interval length, which is an important parameter of the proposed finite impulse response filter, and to obtain a gain, the covariance matrix of the error is set as a cost function, and a linear matrix inequality is used to minimize it. In order to verify the superiority and robustness of the proposed digital phase-locked loop, a simulation was performed for comparison and analysis with the existing method in a situation where noise information was inaccurate.

A Performance Comparison of CCA and RMMA Algorithm for Blind Adaptive Equalization (블라인드 적응 등화를 위한 CCA와 RMMA 알고리즘의 성능 비교)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2019
  • This paper related with the performance comparison of CCA and RMMA blind adaptive equalization in order to reduce the intersymbol interference which is occurred in channel when transmitting the 16-QAM signal, high spectrum efficiencies of nonconstant modulus characteristic. The CCA possible to improve the misadustment and initial convergence by compacting the every signal constellation of 16 by using the sliced symbol of the decision device output, namely statistical symbol, but incresing the computational cost. The RMMA possible to minimize the fast convergence speed and misadjustment and channel tracking capability without increasing the computational cost by obtain the error signal after transform to 4 constant modulus signal based on the region of signal constellation located. In this paper, these algorithm were implemented in the same channel, and the blind adaptive equalization performance were compared using the equalizer output signal constellation, residual isi, MSE, SER. As a result of simulation, the RMMA has better performance in output signal constellation, residual isi and MSE compared to the CCA, but has slow convergence speed about 1.3 times. And the SER performance presenting the robustness to the noise signal, the CCA has more beeter in less SNR, but the RMMA has better in greater than 6dB in SNR.

Equalization Performance according to the Step Change Speed Value for adaptation in VS-CCA using Nonlinear Function of Error Signal (오차 신호의 비선형 함수를 이용하는 VS-CCA에서 적응을 위한 step 변화 속도값에 따른 등화 성능)

  • Lim, Seung-Gag
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.27-32
    • /
    • 2020
  • This paper compare the adaptive equalization performance according to the values of adaptive step variation speed for adapting in VS-CCA (Variable Stepsize-Compact Constellation Algorithm) based on nonlinear function function of error signal. The VS-CCA algorithm compacts the 16-QAM nonconstant modulus signal into the 4 groups of 4-QAM constant modulus signal constellation in quadature plane, then the error signal is generated using the constant modulus of transmitted signal statistics. The adaptive equalizer coefficient were updated in order to achieve the minimum cost function by varying step based on the nonlinear function of error signal. In this time, the instantaneous adaptive step is determined according to the value of step variation speed of nonlinear function and the different equalization performance were obtained according to the step variation speed value. The equalizer internal index and external index which represents the robustness of external noise were used for the performance comparison index. As a result of computer simulation, it was confirmed that the value of variation speed less than 1.0 give more superior in every performance index compared to the greater than 1.0 in steady state.

Detection Scheme Based on Gauss - Seidel Method for OTFS Systems (OTFS 시스템을 위한 Gauss - Seidel 방법 기반의 검출 기법)

  • Cha, Eunyoung;Kim, Hyeongseok;Ahn, Haesung;Kwon, Seol;Kim, Jeongchang
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.244-247
    • /
    • 2022
  • In this paper, the performance of the decoding schemes using linear MMSE filters in the frequency and time domains and the reinforcement Gauss-Seidel algorithm for the orthogonal time frequency space (OTFS) system that can improve robustness under high-speed mobile environments are compared. The reinforcement Gauss-Seidel algorithm can improve the bit error rate performance by suppressing the noise enhancement. The simulation results show that the performance of the decoding scheme using the linear MMSE filter in the frequency domain is severely degraded due to the effect of Doppler shift as the mobile speed increases. In addition, the decoding scheme using the reinforcement Gauss-Seidel algorithm under the channel environment with 120 km/h and 500 km/h speeds outperforms the decoding schemes using linear MMSE filters in the frequency and time domains.

Detecting Adversarial Examples Using Edge-based Classification

  • Jaesung Shim;Kyuri Jo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.10
    • /
    • pp.67-76
    • /
    • 2023
  • Although deep learning models are making innovative achievements in the field of computer vision, the problem of vulnerability to adversarial examples continues to be raised. Adversarial examples are attack methods that inject fine noise into images to induce misclassification, which can pose a serious threat to the application of deep learning models in the real world. In this paper, we propose a model that detects adversarial examples using differences in predictive values between edge-learned classification models and underlying classification models. The simple process of extracting the edges of the objects and reflecting them in learning can increase the robustness of the classification model, and economical and efficient detection is possible by detecting adversarial examples through differences in predictions between models. In our experiments, the general model showed accuracy of {49.9%, 29.84%, 18.46%, 4.95%, 3.36%} for adversarial examples (eps={0.02, 0.05, 0.1, 0.2, 0.3}), whereas the Canny edge model showed accuracy of {82.58%, 65.96%, 46.71%, 24.94%, 13.41%} and other edge models showed a similar level of accuracy also, indicating that the edge model was more robust against adversarial examples. In addition, adversarial example detection using differences in predictions between models revealed detection rates of {85.47%, 84.64%, 91.44%, 95.47%, and 87.61%} for each epsilon-specific adversarial example. It is expected that this study will contribute to improving the reliability of deep learning models in related research and application industries such as medical, autonomous driving, security, and national defense.

A Polarization-based Frequency Scanning Interferometer and the Measurement Processing Acceleration based on Parallel Programing (편광 기반 주파수 스캐닝 간섭 시스템 및 병렬 프로그래밍 기반 측정 고속화)

  • Lee, Seung Hyun;Kim, Min Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.253-263
    • /
    • 2013
  • Frequency Scanning Interferometry(FSI) system, one of the most promising optical surface measurement techniques, generally results in superior optical performance comparing with other 3-dimensional measuring methods as its hardware structure is fixed in operation and only the light frequency is scanned in a specific spectral band without vertical scanning of the target surface or the objective lens. FSI system collects a set of images of interference fringe by changing the frequency of light source. After that, it transforms intensity data of acquired image into frequency information, and calculates the height profile of target objects with the help of frequency analysis based on Fast Fourier Transform(FFT). However, it still suffers from optical noise on target surfaces and relatively long processing time due to the number of images acquired in frequency scanning phase. 1) a Polarization-based Frequency Scanning Interferometry(PFSI) is proposed for optical noise robustness. It consists of tunable laser for light source, ${\lambda}/4$ plate in front of reference mirror, ${\lambda}/4$ plate in front of target object, polarizing beam splitter, polarizer in front of image sensor, polarizer in front of the fiber coupled light source, ${\lambda}/2$ plate between PBS and polarizer of the light source. Using the proposed system, we can solve the problem of fringe image with low contrast by using polarization technique. Also, we can control light distribution of object beam and reference beam. 2) the signal processing acceleration method is proposed for PFSI, based on parallel processing architecture, which consists of parallel processing hardware and software such as Graphic Processing Unit(GPU) and Compute Unified Device Architecture(CUDA). As a result, the processing time reaches into tact time level of real-time processing. Finally, the proposed system is evaluated in terms of accuracy and processing speed through a series of experiment and the obtained results show the effectiveness of the proposed system and method.