• Title/Summary/Keyword: Noise source model

Search Result 369, Processing Time 0.022 seconds

Duct Effects on rotor noise in radiation (덕트가 로터 소음 방사에 미치는 영향)

  • Choi, Han-Lim;Chung, Ki-Hoon;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.938-941
    • /
    • 2004
  • Sound generation and radiation from the duct-rotor system are calculated numerically. The wake geometries of a two-bladed rotor are calculated by using a time-marching fiee-wake method without a non-physical model of the far wake. Acoustic free field due to a rotating rotor is obtained by Lowson's equation. Using Kirchhoff source, rotating sources are modeled as stationary ones and can be inserted in the thin body boundary element method. The Kirchhoff source is validated through calculation of acoustic pressure due to a rotating point force. The thin body boundary element method (thin body BEM) is validated through calculation of acoustic radiation of ducted dipole. Using Kirchhoff source and thin body BEM, acoustic radiation of a ducted rotating source is calculated. Acoustic shielding is observed by inserting a duct and shows different phenomena at each major frequency. Acoustic radiation of a real duct-rotor system is also calculated using this method and the ducted acoustic field is significantly different from rotor only.

  • PDF

Indentification of Coherent/Incoherent Noise Sources Using A Microphone Line Array (독립, 비독립 음원이 동시에 존재할 경우 선형 마이크로폰 어레이를 이용한 소음원 탐지 방법)

  • 김시문;김양한
    • Journal of KSNVE
    • /
    • v.6 no.6
    • /
    • pp.835-842
    • /
    • 1996
  • To identify the locations and strengths of acoustic sources, one may use a microphone line array. Apparent advantage of the source identification method utilizing a line array is that it requires less measurement points than intensity method and holography. This method is based on the information of magnitude and phase difference between pressure signals at each microphone. Since those differences are dependent on the source model, we have to assume them such as plane, monopole, etc. In this paper the conventional source identification methods such as beamforming method and MUSIC method are briefly reviewed by modeling a source as plane and spherical wave, then a modified method is introduced. This can be applied to sound field which may by either coherent or incoherent. Typical simulations and experiment are performed to confirm this identification method.

  • PDF

Study on the Indoor Acoustic Field Analysis using the Blast Wave Model (폭발파 모델을 이용한 실내 음장 해석에 관한 연구)

  • Song, Kee-Hyeok;Kang, Woo-Ram;Lee, Duck-Joo;Kim, Young-Nam
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.142-150
    • /
    • 2015
  • A portable recoilless guided missile generates a strong back blast and impulsive noise at the nozzle when it launches. In the case of indoor operations, the hazard of the blast noise from a recoilless weapon increases due to limited indoor spaces. Also, the noise levels determine the operational feasibility of a weapon; therefore, it is important to predict the blast noise levels distribution in the indoor space in advance. In addition, computational fluid dynamics (CFD) method generally used for fluid related simulations, requires high computing cost and time to simulate the whole domains. The domain includes both blast wave region and large and various indoor space region. Therefore, an efficient method for predicting the far-field noise level within a short time should be developed. This paper describes an analysis model for predicting the indoor noise distributions by considering the shape effect of the building within a short time. A new developed blast wave model was implemented using the noise source. Additionally, noise reflections at the closed surfaces such as walls and noise transmissions at the opened surfaces such as windows and doors were considered in calculating the noise levels. The predicted noise levels were compared with the experimental data obtained from the indoor launch test to validate the reliability of program.

A study of noise source identification on plate excited structure borne sound by acoustic intensity method (음향인텐시티법에 의한 고체진동 가진판의 소음원 검출에 관한 연구)

  • 오재응;김상헌;홍동표;이찬홍
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.43-55
    • /
    • 1986
  • In the studies of noise reduction, it is important to know the generation mechanism of noise in order to identify the noise source. The relation between the structural vibration and the radiated sound is very complex and so this paper deals with a simplified radiation model that was originally developed as a verification tool for the acoustic intensity measurement procedure. As the first step for the identification of the noise source, this study deals with the noise evaluation by measuring sound pressure. On the next step, the acoustic radiational pattern is determined by the acoustic intensity method and this paper established that the acoustic intensity method is effective on the detection of noise. In the study, furthermore, the method could be used to predict the change in the sound radiational characteristics with the attachment of absorber and could be used in determining the attachment position.

  • PDF

Experimental Study on Sound Diffraction over Barrier Using a Spark Discharge Sound Source (스파크 음원을 이용한 장벽의 회절음장에 관한 실험 연구)

  • 주진수
    • Journal of KSNVE
    • /
    • v.9 no.3
    • /
    • pp.466-471
    • /
    • 1999
  • The prediction methods of diffraction field in barrier has beenreported much about the infinite length barrier and it is very few work that reasonable sound source was used in experiment. This study, however, has worked about the several model barrier with acoustic scale model experiment. In the case of scale model experiment, it is difficult to use the kind of source with sufficiently characteristics. A spark discharge sound source with the high repeatability, broad band spectra, small size and omnidirectivity has veen used for the prediction of diffraction field. Several model barriers with different length on the ground were considered for the experiment and compared with the the results calculated by the approximation.

  • PDF

Analysis for Reducing Vibration Transmitted from the Sea-Water Conveying Pipe to the Hull (선체로 전달되는 해수 이송 배관의 진동 저감 분석)

  • Han, Hyung-Suk;Park, Mi-Yoo;Jeong, Weui-Bong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.145-151
    • /
    • 2008
  • URN(Underwater Radiated Noise) is one of the important performances of the battle ship related to the stealth. The main source of the URN is the structure-borne noise on the hull. And the pipe vibration transmitted to the hull is the main source of the structure-borne noise when the speed of the ship is lower than CIS(Cavitation Inception Speed). In this paper, the vibration isolator(rubber mount) for the pipe system is described in order to reduce the structure-borne noise transmitted to the hull. The vibrations on the sea-water conveying pipes and their supports are measured in order to know how much vibration occurs on those positions. Based on these test results, the improved design of the rubber mount is suggested by the parametric study and is verified numerically with the pipe and hull model.

  • PDF

Study on the Position of Error Sensors in an Active Soft Edge Noise Barrier (제어 음원이 방음벽 모서리에 설치되는 능동방음벽의 오차센서 위치에 관한 연구)

  • Baek, Kwang-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1216-1222
    • /
    • 2010
  • Based on the MacDonald's analytic model for the diffracted sound field of a semi-infinite noise barrier, computer simulations were performed for various positions of error microphones for an active noise barrier system. The simulation process also included the effects of floor reflections on both sides of the barrier. The results were also compared with Niu's simulation results and showed a straight line arrangement of sensors and actuators, in the order of primary source, secondary source and error microphone is better than over the top arrangement of the error microphones.

Analysis of the Acoustic Noise Characteristics by Controlling Lead Angle in Brushless DC Motors (진상각 제어에 따른 BLDC 전동기의 소음 특성 해석)

  • 황상문;김경태;정승규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.101-109
    • /
    • 2000
  • Mutual torque ripple in a brushless DC motor is the main source of acoustic noise, especially fur motor operation with high speed and torque. This paper presents a method to obtain mutual torque ripple to identify acoustic noise source. Mutual torque ripple can be determined by analyzing phase current shape and magnetic circuit with different lead angles. Current shape is determined by state space model of voltage equation with the use of inductance calculated by FEM, and confirmed by experimental results. Mutual torque ripple is also determined by FEM analysis for the calculated current shape. Acoustic noise experiment reveals that mutual torque ripple with different lead angle is one of the main sources for noise generation in a brushless DC motor.

  • PDF

The Effects of Noise/Signal Ratios on Noise/Energy Source Identification in Linear Systems (선형계에 있어서의 잡음/신호비가 소음/진동원 규명에 미치는 영향)

  • 박정석;김광준;이종원
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1819-1830
    • /
    • 1991
  • The problems associated with noise/energy source identification using multiple input/single output model in linear systems are investigated. Partial coherence function is formulated for the model introducing a virtual force and extraneous noises into the conventional two input/single output system. The analytical results show that the partial coherence function in two input/single output linear system is the function of noise/signal ratios when multiple inputs are mutually coherent and extraneous noises exist. Parametric studies for ordinary and partial coherence functions are carried out to demonstrate the effects of noise/signal ratios for these functions.