• Title/Summary/Keyword: Noise intensity

Search Result 780, Processing Time 0.035 seconds

A Study on the Pediction of Train Noise Propagation From an Elvated Railway (고가선로에서 철도소음 전파예측에 관한 연구)

  • 주진수
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.289-296
    • /
    • 1998
  • To predict the noise propagation from an elevated railway, sound radiation characteristics of elevated structure are measured by using the sound intensity method. In the base of the results, we propose the source model of elevated structure noise and the calculation model for elevated railway noise. Acoustic model of the former is modeled a row of single sources with directivity cos .theta. positioned in the center of a bogie and arranged in the lower side of slabs. Also prediction model is presented with rolling noise and elevated structure noise calculated by considering the power level of a source for one-third octave band, ground absorption and barrier deflection. Noise level unit patterns of a passing train is calculated based on this model and the results are compared with available field data.

  • PDF

Noise Source Identification of a Car A/V System (차량탑재용 A/Y 시스템의 소음원 규명)

  • 홍종호;이상호;강연준
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.930-938
    • /
    • 2004
  • This paper presents the noise source identification of a car A/V system. There are two different kinds of noise sources noise generated by loading mechanism and rattle noise by externally forced vibration. A dynamometer has been made to produce stationary inertia to the loading mechanism of A/V system. Sound pressure spectra and sound intensity were measured by operating the dynamometer setup as various motor speeds, and the results were analyzed. A dominant rattle noise source about A/V system's components has been found by multi-dimensional spectral analysis. Residual spectrum method was applied for eliminating coherence between the vibration sources. In result, the dominant rattle noise source was identified by partial coherent output spectrum of individual vibration component.

Measurements of the In-Plane Vibration Intensity of a Beam Using an Reference Accelerometer (기준 가속도계를 이용한 보의 면내 진동인텐시티 측정)

  • Kim, C.R.;Kil, H.G.;Jeon, J.S.;Hong, S.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.848-851
    • /
    • 2002
  • In this paper, an experimental method using a reference accelerometer has been developed to measure the in-plane vibration intensity of a beam. It has the advantages of reducing accelerometer phase error comparing with the cross spectral intensity measurement technique using an accelerometer array. It needs no measurement of the input force required in the frequency response method using the only one accelerometer This method has been used to measure the in-plane vibration intensity over the beam. The result has been compared with an input power and the vibration intensity obtained with other methods. It showed that the present experimental method can be effectively used to measure the structural in-plane vibration intensity.

  • PDF

An Experimental Approach and Improvement of Buzz, Squeak and Rattle Noise from a Seat (차량 시트의 BSR Noise에 대한 시험적 고찰 및 개선)

  • Jeon, Jun-Sig;Kim, Byung-Hoon;Bang, Byung-Ju;Jang, Ik-Guen;Ji, Sung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.675-679
    • /
    • 2006
  • Today, the interior noise perceived by the occupants is an important factor in the design of automotive interior assemblies. Buzz, Squeak and Rattle Noises in a Seats are one of the major concerns mentioned above. In this study, the terms 'Buzz, squeak and rattle' were defined as the noise originating from structural vibrations in an assembly. And, the BSR noise of vehicle seat was investigated and the improvement of BSR noise level was confirmed though the structural treatment based on the structural analysis results from the modal and sound intensity of seat.

  • PDF

Particle Velocity and Intensity Estimation Error in Spatial Discrete Domain (입자 속도 및 인텐시티를 공간 영역에서 이산화할 때 발생하는 오차)

  • 김양한;최영철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.352-357
    • /
    • 2004
  • This paper studies the errors that associated with particle velocity and intensity in a space. We theoretically derived their bias error and random error. The analysis shows that the more samples do not always guarantee the better results. The random error of the velocity and intensity are increased when we have many samples. The characteristics of the amplification of the random error are analyzed in terms of the sample spacing. The amplification was found to be related to the spatial differential of random noise. The numerical simulations are performed to verify theoretical results.

APPLICATION OF SOUND INTENSITY METHOD TO NOISE CONTROL ENGINEERING AND BUILDING ACOUSTICS

  • Tachibana, Hideki
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.7-15
    • /
    • 1995
  • Sound pressure and particle velocity are the most essential quantities prescribing a sound field; they correspond to voltage and electric current respectively, in electric system. As electric power is the product of voltage and electric current, sound intensity is the product of sound pressure and particle velocity and it means the acoustic power passing through a unit area in a sound field. Although the definition of sound intensity is very simple as mentioned above, the method of measuring this quantity has not been realized for a long time, because it has been very difficult to measure the particle velocity simultaneously with the sound pressure. Owing to the recent development of such technologies as transducer production and digital signal processing, it has finally been realized. According to the sound intensity(SI) method, the sound power flow in an arbitrary sound field can be directly measured as a vector quantify. In this paper, the principle of the SI method is briefly explained at first and some examples of its application made in the author's laboratory are introduced.

  • PDF

Quantification of Particle Velocity and Intensity Estimation Error in a Discrete Domain (이산 영역에서 공간상의 입자속도, 인텐시티 예측 오차의 정량화)

  • 최영철;김양한
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.403-407
    • /
    • 2003
  • This paper studies the error of pressure, particle velocity, and intensity which are distributed in a space. Errors may be amplified when other sound field variables are predicted. We theoretically derive their bias error and random error. The analysis shows that many samples do not always guarantee good results. Random error of the velocity and intensity are increased when many samples are used. The characteristics of the amplification of the random error are analyzed in terms of the sample spacing. The amplification was found to be related to the spatial differential of random noise. The numerical simulations are performed to verify theoretical results.

  • PDF

Effect of Noise on The Estimation of Motion vector (잡음이 이동벡터 추정에 미치는 영향)

  • 김이한;김성대
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.6
    • /
    • pp.876-877
    • /
    • 1995
  • The techniques for the estimation of motion vector from the image sequence assume implicitly that the intensity of image is constant through the time. But this assumption can be distored by such causes as the added noises and the sub-pel motion following the sampling, and the errors can be generated on the motion estimation by the change of intensity. In this paper, we analyzed theoretically the effect of the change of intensity by the noise on the motion estimation with the white Gaussian noise. We know a fact that the signal may be fluctuated to reduce the effect of the noise and so the sampling rate have to make down. Also we confirmed the theoretically analysis through the experiments which investigated the relation between the noises and the sampling rates.

  • PDF

Modified Hadamard Codes for Spectral-Amplitude-Coding Optical CDMA (Spectral-Amplitude-Coding Optical CDMA를 위한 Modified Hadamard Code)

  • Jhee, Yoon-Kyoo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.8
    • /
    • pp.5-9
    • /
    • 2011
  • Spectral-amplitude-coding optical CDMA systems using codes based upon Hadamard matrices have very restrictive code lengths of $2^n$ and high phase-induced intensity noise(PIIN). In this paper a new code family, namely modified Hadamard code, is proposed to relax the code length restriction and the number of simultaneous users. The improved performance of the proposed system is analysed with the consideration of noise.

Ultralow Intensity Noise Pulse Train from an All-fiber Nonlinear Amplifying Loop Mirror-based Femtosecond Laser

  • Dohyeon Kwon;Dohyun Kim
    • Current Optics and Photonics
    • /
    • v.7 no.6
    • /
    • pp.708-713
    • /
    • 2023
  • A robust all-fiber nonlinear amplifying loop-mirror-based mode-locked femtosecond laser is demonstrated. Power-dependent nonlinear phase shift in a Sagnac loop enables stable and power-efficient mode-locking working as an artificial saturable absorber. The pump power is adjusted to achieve the lowest intensity noise for stable long-term operation. The minimum pump power for mode-locking is 180 mW, and the optimal pump power is 300 mW. The lowest integrated root-mean-square relative intensity noise of a free-running mode-locked laser is 0.009% [integration bandwidth: 1 Hz-10 MHz]. The long-term repetition-rate instability of a free-running mode-locked laser is 10-7 over 1,000 s averaging time. The repetition-rate phase noise scaled at 10-GHz carrier is -122 dBc/Hz at 10 kHz Fourier frequency. The demonstrated method can be applied as a seed source in high-precision real-time mid-infrared molecular spectroscopy.