• Title/Summary/Keyword: Noise detection algorithm

Search Result 874, Processing Time 0.032 seconds

A real-time QRS complex detection algorithm using topological mapping in ECG signals (심전도 신호의 위상학적 팹핑을 이용한 실시간 QRS 검출 알고리즘)

  • 이정환;정기삼;이병채;이명호
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.5
    • /
    • pp.48-58
    • /
    • 1998
  • In this paper, we proposed a new algorithm using characteristics of th ereconstructed phase trajectory by topological mapping developed for a real-tiem detection of the QRS complexes of ECG signals. Using fill-factor algorithm and mutual information algorithm which are in genral used to find out the chaotic characteristics of sampled signals, we inferred the proper mapping parameter, time delay, in ECG signals and investigated QRS detection rates with varying time delay in QRS complex detection. And we compared experimental time dealy with the theoretical one. As a result, it shows that the experimental time dealy which is proper in topological mapping from ECG signals is 20ms and theoretical time delays of fill-factor algorithm and mutual information algorithm are 20.+-.0.76ms and 28.+-.3.51ms, respectively. From these results, we could easily infer that the fill-factor algorithm in topological mapping from one-dimensional sampled ECG signals to two-dimensional vectors, is a useful algorithm for the detemination of the proper ECG signals to two-dimensional vectors, is a useful algorithm for the detemination of the proper time delay. Also with the proposed algorithm which is very simple and robust to low-frequency noise as like baseline wandering, we could detect QRS complex in real-time by simplifying preprocessing stages. For the evaluation, we implemented the proposed algorithm in C-language and applied the MIT/BIH arrhythmia database of 48 patients. The proposed algorithm provides a good performance, a 99.58% detection rate.

  • PDF

Two-Microphone Generalized Sidelobe Canceller with Post-Filter Based Speech Enhancement in Composite Noise

  • Park, Jinsoo;Kim, Wooil;Han, David K.;Ko, Hanseok
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.366-375
    • /
    • 2016
  • This paper describes an algorithm to suppress composite noise in a two-microphone speech enhancement system for robust hands-free speech communication. The proposed algorithm has four stages. The first stage estimates the power spectral density of the residual stationary noise, which is based on the detection of nonstationary signal-dominant time-frequency bins (TFBs) at the generalized sidelobe canceller output. Second, speech-dominant TFBs are identified among the previously detected nonstationary signal-dominant TFBs, and power spectral densities of speech and residual nonstationary noise are estimated. In the final stage, the bin-wise output signal-to-noise ratio is obtained with these power estimates and a Wiener post-filter is constructed to attenuate the residual noise. Compared to the conventional beamforming and post-filter algorithms, the proposed speech enhancement algorithm shows significant performance improvement in terms of perceptual evaluation of speech quality.

Time-Frequency Domain Impulsive Noise Detection System in Speech Signal (음성 신호에서의 시간-주파수 축 충격 잡음 검출 시스템)

  • Choi, Min-Seok;Shin, Ho-Seon;Hwang, Young-Soo;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.2
    • /
    • pp.73-79
    • /
    • 2011
  • This paper presents a new impulsive noise detection algorithm in speech signal. The proposed method employs the frequency domain characteristic of the impulsive noise to improve the detection accuracy while avoiding the false-alarm problem by the pitch of the speech signal. Furthermore, we proposed time-frequency domain impulsive noise detector that utilizes both the time and frequency domain parameters which minimizes the false-alarm problem by mutually complementing each other. As the result, the proposed time-frequency domain detector shows the best performance with 99.33 % of detection accuracy and 1.49 % of false-alarm rate.

Voice Activity Detection Using Global Speech Absence Probability Based on Teager Energy in Noisy Environments (잡음환경에서 Teager Energy 기반의 전역 음성부재확률을 이용하는 음성검출)

  • Park, Yun-Sik;Lee, Sang-Min
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.1
    • /
    • pp.97-103
    • /
    • 2012
  • In this paper, we propose a novel voice activity detection (VAD) algorithm to effectively distinguish speech from nonspeech in various noisy environments. Global speech absence probability (GSAP) derived from likelihood ratio (LR) based on the statistical model is widely used as the feature parameter for VAD. However, the feature parameter based on conventional GSAP is not sufficient to distinguish speech from noise at low SNRs (signal-to-noise ratios). The presented VAD algorithm utilizes GSAP based on Teager energy (TE) as the feature parameter to provide the improved performance of decision for speech segments in noisy environment. Performances of the proposed VAD algorithm are evaluated by objective test under various environments and better results compared with the conventional methods are obtained.

Faults Detection Method Unrelated to Signal to Noise Ratio in a Hub Bearing (신호대 잡음비에 무관한 허브 베어링 결함 검출 방법)

  • Choi, Young-Chul;Kim, Yang-Hann;Ko, Eul-seok;Park, Choon-Su
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1287-1294
    • /
    • 2004
  • Hub bearings not only sustain the body of a cat, but permit wheels to rotate freely. Excessive radial or axial load and many other reasons can cause defects to be created and grown in each component. Therefore, nitration and noise from unwanted defects in outer-race, inner-race or ball elements of a Hub bearing are what we want to detect as early as possible. How early we can detect the faults has to do with how the detection algorithm finds the fault information from measured signal. Fortunately, the bearing signal has Periodic impulse train. This information allows us to find the faults regardless how much noise contaminates the signal. This paper shows the basic signal processing idea and experimental results that demonstrate how good the method is.

Touch Position Recovery Algorithm for Differential Sensing Touch Screen

  • Kim, Ji-Ho;Won, Dong-Min;Kim, HyungWon
    • Journal of information and communication convergence engineering
    • /
    • v.14 no.2
    • /
    • pp.106-114
    • /
    • 2016
  • Differential sensing methods are more effective in alleviating panel noise than single-line sensing, and thus have been increasingly used in the touch screen industry. However, they have a drawback: they tend to cancel out multiple touches and need touch position recovery algorithms. This paper introduces a novel algorithm of touch position recovery for differential sensing, which is a low-complexity but high-accuracy approach for determining multiple touch positions. We have implemented the proposed method in a touch screen controller system on a chip. In the simulation experiments using realistic touch screen models and a differential sensing circuit, the algorithm exhibited a high detection performance of a signal-to-noise ratio gain of up to 52.21 dB. Therefore, we can conclude that the proposed method is substantially more accurate than the previous method. Further, the proposed method incurs little or no overhead in terms of the detection speed and the chip size.

A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function

  • Chen, Ze-peng;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.825-835
    • /
    • 2017
  • Significant improvements to methodologies on structural damage detection (SDD) have emerged in recent years. However, many methods are related to inversion computation which is prone to be ill-posed or ill-conditioning, leading to low-computing efficiency or inaccurate results. To explore a more accurate solution with satisfactory efficiency, a PSO-INM algorithm, combining particle swarm optimization (PSO) algorithm and an improved Nelder-Mead method (INM), is proposed to solve multi-sample objective function defined based on Bayesian inference in this study. The PSO-based algorithm, as a heuristic algorithm, is reliable to explore solution to SDD problem converted into a constrained optimization problem in mathematics. And the multi-sample objective function provides a stable pattern under different level of noise. Advantages of multi-sample objective function and its superior over traditional objective function are studied. Numerical simulation results of a two-storey frame structure show that the proposed method is sensitive to multi-damage cases. For further confirming accuracy of the proposed method, the ASCE 4-storey benchmark frame structure subjected to single and multiple damage cases is employed. Different kinds of modal identification methods are utilized to extract structural modal data from noise-contaminating acceleration responses. The illustrated results show that the proposed method is efficient to exact locations and extents of induced damages in structures.

A new algorithm of pulse generation and detection for UWB communication system (UWB통신 시스템을 위한 새로운 펄스생성 방법 및 수신 알고리즘)

  • 김건수;윤상훈;정정화;이경국
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.242-245
    • /
    • 2003
  • This paper introduces a new algorithm of pulse generation and detection for UWB communication system. The existing UWB systems using Gaussian pulse have some difficulties to cope with bandwidth limitation and frequency transition. Moreover. the system sensitivity to channel noise has made the processes of acquisition and tacking difficult. in this paper, we introduce a new pulse generation method which is able to control the bandwidth and center frequency applying modulation method. thus could improve the detection performance of receiving algorithm. Also, we made a system to search maximum perk by applying the proposed algorithm and consequently could guarantee the correct detection. By the result of simulation, when accumulate 10 times at every 2dB band shifting from 0 to 18dB on AWGN channel, we could confirm the proposed method has 97.4% PDR(Pulse Detection Rate) and 1.868% FAR(False Alarm Rate) performance at 4dB SNR and 15% transmission power threshold level.

  • PDF

Triqubit-State Measurement-Based Image Edge Detection Algorithm

  • Wang, Zhonghua;Huang, Faliang
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1331-1346
    • /
    • 2018
  • Aiming at the problem that the gradient-based edge detection operators are sensitive to the noise, causing the pseudo edges, a triqubit-state measurement-based edge detection algorithm is presented in this paper. Combing the image local and global structure information, the triqubit superposition states are used to represent the pixel features, so as to locate the image edge. Our algorithm consists of three steps. Firstly, the improved partial differential method is used to smooth the defect image. Secondly, the triqubit-state is characterized by three elements of the pixel saliency, edge statistical characteristics and gray scale contrast to achieve the defect image from the gray space to the quantum space mapping. Thirdly, the edge image is outputted according to the quantum measurement, local gradient maximization and neighborhood chain code searching. Compared with other methods, the simulation experiments indicate that our algorithm has less pseudo edges and higher edge detection accuracy.