• 제목/요약/키워드: Noise Transfer path analysis

검색결과 108건 처리시간 0.025초

건설기계 엔진마운트 최적설계에 관한 실용적 연구 (A Practical Research of Engine Mount Optimization in a Construction Equipment)

  • 신명호;주경훈;김우형;김인동;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 추계학술대회 논문집
    • /
    • pp.792-796
    • /
    • 2013
  • A practical process to optimize engine mounts on construction equipment is presented in this research. Transmitted force from the engine is estimated by using stiffness of the mount rubber which varies with frequency, amplitude and pre-load, and by the engine excitation force that comes from piston mass and gas pressure and so on. The transmitted force is measured through TPA(Transfer Path Analysis) and is then compared with the estimated force. The optimum mount position and stiffness are solved using MATLAB. The result shows the improvement on engine mount vibration.

  • PDF

DFSS기법을 이용한 차량 엔진마운팅 시스템 최적화 (The Optimization of Vehicle Engine Mounting System Using DFSS(design for six sigma) Technique)

  • 박운환;송윤철
    • 한국소음진동공학회논문집
    • /
    • 제20권3호
    • /
    • pp.235-241
    • /
    • 2010
  • Engine Mount plays an important role which supports engine, isolates vibration from engine and blocks the vibration from road. Development of engine mount for NVH costs great a deal. So, the cost of development being reduced, the way developed effectively engine mount using DFSS technique is proposed in this paper. CTQ(critical to quality) is vibration and parameter is dynamic stiffness of mounts. The core parameters are selected with TPA(transfer path analysis) technique. It uses design of experiments(DOE) or Taguchi Methods to optimize parameter values and reduce variation. And then, this paper shows the result of improvement for vibration in the developing vehicle.

다차원 스펙트럼 해석법을 이용한 로드노이즈의 전달경로 해석 및 실내음압 예측 (Transfer Path Analysis and Interior Noise Estimation of the Road Noise Using Multi-dimensional Spectral Analysis Method)

  • 박상길;강귀현;황성욱;오기석;노국희;오재응
    • 한국소음진동공학회논문집
    • /
    • 제18권11호
    • /
    • pp.1206-1212
    • /
    • 2008
  • This paper presents a the method for estimating the noise source contribution on the road noise of the vehicle in a multiple input system where the input sources may be coherent with each other. By coherence function method, it is found that the biggest part of the noise source in the road noise is generated by structural vibration on the mechanical-acoustic transfer functions of vehicles. This analysis is modeled as four input/single output system because the noise is generated with four wheels that mechanism of the road noise is very complicated. The coherence function method is proved to be useful tool for identifying of noise source. The overall levels of the interior noise be coherence function method are compared with those measured and calculated by the frequency response function approach using mechanical excitation test. The experimental results have shown a good agreement with the results calculated by the coherence function method when the input sources are coherent strongly each other. The estimation of the road noise indicates that significant coherent can be achieved in the vehicle interior noise.

진동 유동해석기법을 이용한 자동차 실내소음 저감 및 음질 개선 (A Study on Improvement of Sound Quality of Vehicle Using the Vibrational Power Flow)

  • 이상권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.208-214
    • /
    • 2000
  • Reduction of structure-borne noise of the compartment in a car is an important task in automotive engineering. Transfer path analysis using vibroacoustic reciprocity technique or multiple path decomposition method has generally been used for structure-borne noise path analysis. These methods are useful in solving particular problem but do not quantify the effectiveness of vibration isolation of each isolator of a vehicle. To quantify the effectiveness of vibration isolation, the vibrational power flow has been used for a simple isolation system or a laboratory based isolation system. It is often difficult to apply the vibrational power flow technique to the complex isolation system like a car. In this paper, a simple equation is derived for calculation of the vibrational power flow of an isolation system with multiple isolators such as a car. It is successfully applied to not only quantifying the relative contributions of eighteen isolators but also reducing structure-borne noise of a passenger car. According to the results, the main contributor of eighteen isolators is the rear roll mount of an engine. The reduced structure-borne noise level is about 5dBA.

  • PDF

INTERIOR ROAD NOISE ANALYSIS WITH PRINCIPAL COMPONENTS

  • Vandenbroeck, D.;Hendricx, W.
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 FIFTH WESTERN PACIFIC REGIONAL ACOUSTICS CONFERENCE SEOUL KOREA
    • /
    • pp.854-859
    • /
    • 1994
  • As powertrain noise is better and better controlled, road noise inputs become more important. The interior road noise of a car is mainly induced by the wheels rolling over the road surface. Each of the four wheels act as an independent and uncorrelated excitation input. To rank the energy transfer form each input to the interior, a Transfer Path Analysis (TPA) needs to be made-which requires operational vibration measurements. However due to the multiple uncorrelated inputs, phase relations vary continuously. It is therefore necessary to separate the operational data into set of "independent phenomena" by means of a Principal Component Analysis (PCA). A TPA can then be carried out for each independent phenomenon. Operational deflection shapes referenced to these principal components share the physical phenomena. The details of the methodology are discussed and a discussion of the results on a car shows that the method gives accurate results for full vehicle testing.e testing.

  • PDF

다차원 스펙트럼 해석법을 이용한 로드노이즈의 전달경로 해석 및 실내음압 예측 (Transfer Path Analysis and Interior Noise Estimation of the Road Noise Using Multi-Dimensional Spectral Analysis Method)

  • 박상길;강귀현;황성욱;오기석;노국희;오재응
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.779-784
    • /
    • 2008
  • This paper presents a the method for estimating the noise source contribution on the road noise of the vehicle in a multiple input system where the input sources may be coherent with each other. By coherence function method, it is found that the biggest part of the noise source in the road noise is generated by structural vibration on the mechanical-acoustic transfer functions of vehicles. This analysis is modeled as four input/single output system because the noise is generated with four wheels that mechanism of the road noise is very complicated. The coherence function method is proved to be useful tool for identifying of noise source. The overall levels of the interior noise be coherence function method are compared with those measured and calculated by the frequency response function approach using mechanical excitation test. The experimental results have shown a good agreement with the results calculated by the coherence function method when the input sources are coherent strongly each other. The estimation of the road noise indicates that significant coherent can be achieved in the vehicle interior noise.

  • PDF

로드노이즈 성능 예측을 위한 현가장치 하드포인트의 가진력 직접 측정법에 대한 실험적 평가 (Experimental Evaluation of Direct Measurement for Excitation Forces Acting on the Hard-points of Suspension System to Predict Road-noise Performance)

  • 강연준;김희수;송현진;이강덕;김형건
    • 한국소음진동공학회논문집
    • /
    • 제25권3호
    • /
    • pp.184-190
    • /
    • 2015
  • NVH engineering has become a hot issue due to radical technology changes and development in automotive industry since customers' expectations and needs for their vehicle is taken to a higher level. However, the source identification and quantification of the road noise within a vehicle is still not at the level where it needs to be to meet their expectations due to its' complex transfer path and difficulties in path optimization. The primary focus of this research is on direct force obtaining method at suspension hard points using suspension test rig. Directly obtained forces at suspension to body mounting points are critical and crucial for determining the effects of design changes of the suspension has on road noise performance. Direct force obtaining method has its limitation in sensor installation within an actual vehicle therefore, many has been indirectly calculating forces using full matrix inversion method or dynamic stiffness method. In this study, to circumvent this limitation, a suspension rig is used. Then, the suspension rig is verified through a comparative analysis of its dynamic behavior between the actual vehicle by cleat test on chassis dynamometer.

변압기 소음제어를 위한 음향 시스템의 동특성 해석 및 전달함수 추정 (Dynamic Characteristic Analysis and Transfer Function Estimate of Acoustic System for Transformer Noise Control)

  • 김영달;정창경;심재명
    • 조명전기설비학회논문지
    • /
    • 제13권3호
    • /
    • pp.17-24
    • /
    • 1999
  • 본 연구는 스피터와 마이크폰쌍을 이용하여 변압기 소음 감소를 위한 적응 능동소음제어에 있어서 스피커-증폭기-마이크로폰 경로와 스피거-마이크로폰 쌍의 동특성에 대한 이론적인 내용과 시뮬레이션을 통하여 이를 확인하였다. 또한 음향경로 내에 존재하는 마이크로폰-스피커 쌍의 전달함수를 SLS(sequential least square)알고리즘으로 추정하였으며, 추정된 전달함수에 대한 identify는 z 평면에서 안정된 극점과 영점을 갖고 있음을 확인하였다.

  • PDF

OTPA방법을 이용한 철도차량 실내 소음 기여도 분석 연구 (A Study on Interior Noise Contribution Analysis of Trains based on OTPA Method)

  • 정재덕;홍석윤;송지훈;권현웅;노희민;김준곤
    • 한국소음진동공학회논문집
    • /
    • 제26권1호
    • /
    • pp.97-103
    • /
    • 2016
  • The sensitivity of interior noise that the passengers perceive is comparatively high in the train, and structure-borne and air-borne types of noises come into the train. In this paper, to analyze contributions of these noise sources operational transfer path analysis(OTPA) is used. OTPA has some advantages of executing the contribution rates of several sources simultaneously, and in this work, 29 points are measured while running. Transfer functions between reference measurement points and response measurement points are calculated by the singular value decomposition(SVD) and Principal component analysis(PCA) method, and the frequency characteristics of the noise source are successfully derived. Also the interior noise is predicted and compared with measurement data to show the reliability.