• 제목/요약/키워드: Noise Transfer path analysis

검색결과 108건 처리시간 0.028초

전달경로해석법에 의한 진동하는 판넬의 방사 소음 예측 (Prediction Of Vibrating Panel's Radiating Noise By Transfer Path Analysis)

  • 오재응;이선훈;정운창;김진수;이유엽
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.292-293
    • /
    • 2014
  • Transfer Path Analysis is technique predicting transmitted energy through each path. Using the Transfer Path Analysis, structure-borne noise and air-borne noise can be predicted from the system. In this study, however, the Transfer Path Analysis to target only the structure-borne noise due to the noise radiated from the vibrating panel was performed. Predicted noise by the Transfer Path Analysis and measured noise by the experiment were a high correlation. We confirmed the validity of the Transfer Path Analysis through the analysis of these results, showed how to apply the Transfer Path Analysis.

  • PDF

TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석 (Sensitivity Analysis using TPA for Slosh Noise of Fuel Tank)

  • 차희범;윤성호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.356-360
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

  • PDF

TPA 방법을 이용한 연료탱크의 슬로싱 소음에 관한 민감도 해석 (Sensitivity Analysis Using TPA for Slosh Noise of Fuel Tank)

  • 차희범;윤성호
    • 한국소음진동공학회논문집
    • /
    • 제17권8호
    • /
    • pp.766-770
    • /
    • 2007
  • Fuel sloshing in a vehicle fuel tank generates a reluctant low frequency noise, called slosh noise. To reduce slosh noise, whilst many approaches have used the Computational Fluid Dynamics method to first identify fuel behavior in a fuel tank, this paper applies the Transfer Path Analysis method. It is to find contribution of each transfer path from noise transfer function, vibration transfer function and acceleration. Then the final goal is to attenuate slosh noise by controlling them. To this aim, two types of models are studied. One is the decoupled model in which some of connection points of the fuel tank with the vehicle underbody are separated. The other is the modified model which is created by changing noise transfer function and acceleration from the original model. The analysis and validation test results show that the transfer path analysis can be an approach to enhancing slosh noise.

차량 가진원 유무에 따른 실내소음의 전달경로 분석에 대한 연구 (Transfer Path Analysis of the Vehicle Interior Noise according to Excitation Existence or not)

  • 박종호;이상권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.365-370
    • /
    • 2011
  • Structure-bone noise is an important aspect to consider during the design and development of a vehicle. Reduction of structure-bone noise of the compartment in a vehicle is an important task in automotive engineering. Many methods which analyze transfer path of noise have been used for structure-bone noise. The existing method to measure of frequency response function of transfer path has been tested by removing a source. This Paper presents an experimental analysis about Transfer Path Analysis of the vehicle interior noise according to Excitation or not. To identify these points of difference, experiment were conducted through an experimental test using simulation vehicle.

  • PDF

주행 차량의 로드 노이즈 예측을 위한 각 입력원의 기여도 평가 (Transfer Path Analysis and Estimation of the Road Noise for the Driving Vehicle)

  • 양인형;정재은;윤지현;오재응
    • 한국소음진동공학회논문집
    • /
    • 제20권11호
    • /
    • pp.1071-1077
    • /
    • 2010
  • The reduction of the vehicle interior noise has been the main interest of noise and vibration harshness(NVH) engineers. A passenger vehicle has various and complicated transmission paths of sound and vibration. In order to identify the mechanism of transfer path, estimation of excitation force and exact modeling of transfer path are required. This paper presents method for estimating the noise source contribution on the road noise of the vehicle in a multiple input system where the input sources may be coherent with each other. And vector synthesis technique is employed to identify the characteristics of road noise and its transmission to vehicle compartment through noise and vibration analysis. Vibration reduction efficiency of each transfer path is evaluated by comparing individual vector components obtained virtual simulation.

소음 전달 결로 해석 및 주행 모두 해석을 이용한 차량의 실내소음 저감을 통한 음색 향상 (Improvement of Sound Quality of Vehicle Through Reduction of Interior Noise Using Noise Transfer Path Analysis and Running Modal Analysis)

  • 이상권;황우석;김중희;우재학;이상희;이학준
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.806-810
    • /
    • 2000
  • This paper presents a practical method for reduction of interior noise and improvement of sound quality in compartment of passenger car. The tested vehicle has a booming noise problem at rear passenger seats. In order to identify the transfer path of interior noise, the running modal analysis, the vibro-acoustic frequency transfer response and the noise path analysis are systematically employed. Using these various methods, it has been founded that the rear part of the roof of the test car was a noise source for the booming noise. Through the modification of the roof, the booming noise has been reduced and sound quality inside car also has been improved.

  • PDF

Contribution Analysis of Simulated Pass-by Data using Operational Transfer Path Analysis

  • Lohrmann, Martin;Kluiber, Florian
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2010년도 춘계학술대회 논문집
    • /
    • pp.123-125
    • /
    • 2010
  • As the exterior noise emitted by a vehicle is getting more and more attention, simulated pass-by measurements become more important. This well established method provides information about the total noise emitted by the vehicle. For a vehicle manufacturer it is not only interesting to know about the total noise but also to know how this total exterior noise is composed of different contributions, such as for example the contribution of the engine, the intake or exhaust system. Transfer path analysis (TPA) provides a separation of these contributions for each of the pass-by microphones alongside the track. Presented is a method for fast and efficient determination of the contributions of multiple sources using operational transfer path analysis (OTPA). The calculation of the transfer characteristics between the reference measurement points on the vehicle and the corresponding response points of both microphone lines are carried out while operation of the vehicle. As result of the contribution analysis from operational transfer path analysis, the characteristic noise level as function of the covered distance is displayed for all individual sound sources, thus providing in depth information for sound quality engineering.

  • PDF

차량용 에어컨 부밍 소음의 전달 특성에 관한 연구 (A Study on Transfer Characteristics of Vehicle Air-conditioner Booming noise)

  • 임승택;주경훈;안휴남;박영덕;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.476-481
    • /
    • 2013
  • Transfer path analysis(TPA) and operational deflection shape(ODS) have been widely utilized to analyze the characteristics of noise. TPA enables to decompose a noise into air-borne and structure-borne noises then estimate the path contribution of noise. ODS enables to analyze a moving shape and direction of interest components at a particular frequency. In this paper, TPA and ODS are applied to transfer paths of air-conditioner booming noise in a vehicle to reduce noise level, then a fixture is mounted it's path for distributing the high portion path contribution to the low portion path contribution. Through this experiment, the reduction of sound pressure level in air-conditioner booming noise is observed. Thereafter, TPA is again employed to verify the results of contribution.

  • PDF

PAK system 을 이용한 의료용 컴프레서의 진동.소음 전달경로 해석 (Transfer Path Analysis of vibration and noise for medical air compressor using PAK system)

  • 강귀현;강진철;박천권;이정환;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.1000-1004
    • /
    • 2008
  • As performance of medical air compressor improve, the problem of noise increased. Noise is very important to medical air compressor because most of this installed inside of building. The main goal of this paper is show TPA (Transfer Path Analysis) result for contribution analysis using PAK system. Generally, the conventional TPA method consists of two steps. First, transfer functions between output sound and sources are measured by excitation experiment. Second, transferred sound in each transfer path is generated by multiplying the transfer function and the sound source signal. Then, if the output sound synthesized from all transferred sounds doesn't give good agreement with the measured output sound (i.e., the accuracies of the transfer functions are low), setting a suitable countermeasure guideline becomes difficult. For obtaining highly accurate transfer functions, eliminating correlations among transfer functions and noise included in the measured data are necessary. In the new method with PAK system, the vibration acceleration and sound signals around the sound sources and the output sound were measured simultaneously to obtain the transfer functions when compressor was operating. By applying PAK system, a highly accurate and efficient transfer path analysis method was developed that does not require an excitation experiment.

  • PDF

부분기여도함수를 이용한 전술차량 소음원 분석 (Noise-source Analysis of Tactical Vehicle Using Partial Coherence Function)

  • 박성호;이경현;한형석;전수홍
    • 한국소음진동공학회논문집
    • /
    • 제26권7호
    • /
    • pp.774-780
    • /
    • 2016
  • In this paper noise source and transfer path of tactical vehicle are analyzed with partial coherence function and spectrum analysis. Engine, transmission, structure panel and aerodynamic are main source of cabin noise. To reduce cabin noise, identifying transfer path of sources and analyzing their contribution is important. With modeling of transfer path and partial coherence function, transfer path and principal noise source can be identified. Engine/transmission and structural resonance are principal source of low frequency noise and by adding stiffener and sound absorbing material, resonance of vibration and inflow air problem can be solved.