• Title/Summary/Keyword: Noise Simulation

Search Result 3,973, Processing Time 0.033 seconds

Noise Map Analysis for the Design of Noise Barrier at School Site (학교부지의 방음벽 설계를 위한 소음지도 해석)

  • Yun, Junho;Kim, Wonjin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.232-238
    • /
    • 2012
  • In this study, the noise mapping simulation is executed to design an effective barrier reducing noise levels of a school site. The geographical features of the ambient site and the school buildings are modelled in detail in order to consider sound propagation, deflection, and absorption phenomena etc. The main sound source, sound power level of expressway, is estimated on the basis of measured noise levels at several points of the site. The noise mapping simulation is performed by using ENPro, environmental noise prediction program based on ISO 9613 to analysis the effectiveness of noise barrier. Consequently, the noise barrier is designed to meet an environmental noise standard and satisfy low cost and safety conditions.

Single Channel Active Noise Control using Adaptive Model (적응모델을 이용한 단일채널 능동 소음제어)

  • Kim, Yeong-Dal;Lee, Min-Myeong;Jeong, Chang-Gyeong
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.8
    • /
    • pp.442-450
    • /
    • 2000
  • Active noise control is an approach to noise reduction in which a secondary noise source that destructively interferes with the unwanted noise. In general, active noise control systems rely on multiple sensors to measure the unwanted noise field and the effect of the cancellation. This paper develops an approach that utilizes a single sensor. The noise field is modeled as a stochastic process, and a time-adaptive algorithm is used to adaptively estimate the parameters of the process. Based on these parameter estimates, a canceling signal is generated. Opppenheim model assumed that transfer function characteristics from the canceling source to the error sensor is only propagation delay. But this paper proposes a modified Oppenheim model by considering transfer characteristics of acoustic device and noise path. This transfer characteristics is adaptively cancelled by adaptive model. This is proved by computer simulation with artifically generated random noise and sine wave noise. The details of the proposed architecture, and theoretical simulation and experimental results of the noise cancellation system for three dimension enclosure are presented in the paper.

  • PDF

Prediction of Aerodynamic noise of Pantograph on a high-speed train using the Acoustic Analogy (음향근사기법을 이용한 고속철도 판토그래프의 공력소음 예측)

  • Han, Jae-Hyun;Kim, Tae-Min;Kim, Jeung-Tae;Kim, Jung-Soo
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.150-157
    • /
    • 2011
  • Nowadays, high speed train has settled down as a fast and convenient environment-friendly transportation and it's need is gradually increasing. However increased train speed leads to increased aerodynamic noise, which causes critically affects comfortability of passengers. Especially, the pantograph of high speed train is protruded out of train body, which is the main factor for increased aerodynamic noise. Since aerodynamic noise caused pantograph should be measured in high speed, it is difficult to measure it and to analysis aerodynamic noise characteristics due to the various types of pantograph. In this research, aerodynamic noise of pantograph is predicted by CFD (Computational Fluid Dynamic) and FW-H (Ffowcs Williams-Hawkings) equation. Also, Wind tunnel test results and numerical simulation results were compared. As a result, Simulation results predicting sound pressure level is very similar with wind tunnel test result. This research will draw major factor in aerodynamic noise of pantograph and will be utilized for predict sound pressure level of pantograph.

  • PDF

Active Noise Control of Induction Motor using Co-FXLMS Algorithm (Co-FXLMS 알고리즘을 이용한 유도전동기의 능동소음제어)

  • Kim, Young-Min;Nam, Hyun-Do;Lee, Young-Jin;Lee, Kwon-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1489-1495
    • /
    • 2012
  • In this study, the active noise control experiment has been performed using induction motor noises. While the noises were measured, a induction motor was operated in different speed. For the simulation of ANC(Active Noise Control), test-bed is composed a multi-channel ANC system was constructed. In order to compare the control performance, we performed noise reduction simulations of ANC by Co-FXLMS algorithm and FXLMS algorithm. Through the simulation results, we confirmed that convergence performance and noise decrease effect of the proposed Co-FXLMS algorithm have been improved from existing FXLMS algorithm.

A Study on Discrete Frequency Noise from a Symmetrical Airfoil in a Uniform Flow (에어포일 이산소음 특성에 관한 연구)

  • Kim, H.J.;Lee, S.B.;Fujisawa, N.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.646-651
    • /
    • 2002
  • The flow field around a symmetrical airfoil in a uniform flow under the generation of noise was studied by experiments and numerical simulation. The experiments are conducted by visualizing the surface flow over the airfoil with a shear-sensitive liquid-crystal coating and by measuring the instantaneous velocity field around the trailing edge of the airfoil. The results indicate that the discrete frequency noise is generated when the separated laminar flow reattaches near the trailing edge of the pressure side and the turbulent boundary layer is formed over the suction side of the airfoil near the trailing edge. The periodic behavior of vortex formation was observed around the trailing edge and it persists further downstream in the wake. The frequency of the vortex formation in the wake was consistent with that of the discrete frequency noise.

  • PDF

Analysis of Acoustic Characteristics and Shooting Noise Prediction for Shooting Range Soundproofing in Military (군부대 방음사격장의 음향특성 분석 및 사격소음 예측)

  • Jeong, A-Yeong;Kim, Jae-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.833-839
    • /
    • 2014
  • The shooting noise caused by shooting training, which has strength and impacts, is becoming a serious damage to the residents around the shooting range and, consequently, the number of civil appeals against the shooting noise is on the constant increase. For this reason, the military examines the effects of the shooting noise at the stage of design in constructing a shooting range and tries to build a soundproof shooting range to minimize civil appeals. However, the lack of research and data concerning propagation and attenuation, both of which characterize the shooting noise from within a soundproof shooting range, even makes it so difficult to design a soundproof shooting range in constructing it. So this study used an acoustic simulation in a soundproof shooting range to identify acoustic and propagation characteristics within the shooting range and, on this basis, predicted the noise level at an exit of the soundproof shooting range. As a result, if the form and specifications of a soundproof shooting range were decided on at the stage of design, it was possible to use a simulation to design a soundproof shooting range with optimized acoustic performance and, on this basis, to predict a sound pressure level at an exit of the soundproof shooting range. On the basis of these data, it is probably possible to determine the degree of the effects of the shooting noise on the villages around a shooting range and the extent of damage to it and to minimize civil appeals against the shooting noise and resolve the issues of compensation and agreement with ease. This study is expected to provide useful data for designing and constructing a similar soundproof shooting range.

Development of a Simulation Software of Traffic Noise (도로교통소음 예측식의 개발)

  • 이장명;장동주;최정순
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1045-1049
    • /
    • 2001
  • Before building houses or apartments, we need to predict noise propagation to eliminate possible noise problems to residents. However, we do not try to predict noise propagation during estimation of noise effect for the developing area since we did not have a good mathematical model to predict noise level due to a traffic noise. In this article, an adequate mathematical model has been developed and proved to predict noise effect to living area due to a traffic noise.

  • PDF

A Study on the Torpedo Sonar Simulation for Combat System by Modeling Target and Noise (전투체계를 위한 표적 및 주변소음 모델링을 통한 어뢰소나 표적탐지 시뮬레이션 연구)

  • Kim, Yong;You, Hyun Seung;Kim, Seung Hwan;Ji, Jae Kyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.6
    • /
    • pp.554-564
    • /
    • 2020
  • In environment of torpedo firing, underwater acoustic signal is generated by target and noise. Sound wave which is generated from acoustic signal is propagated by seawater and it is received through the sonar(sound navigation and ranging) system mounted on torpedo. In the ocean, acoustic signal or sound wave from target that is generated by the spread of broadband can be attenuated by ambient noise and can be lost by medium and environment. This research is designed to support teamwork training in Naval operations by constructing a simulation system that is more similar to the real-world conditions. This paper attempts to research the modeling of target detection and to develop the simulation of torpedo sonar(TOSO). In order to develop the realistic simulation, we researched the broadband sound modeling of target and noise source, the modeling of acoustic transmission loss by chemical component of seawater, and the modeling of signal attenuation by ambient noise environment which is approximated by experimental measurements in seawater surrounding the Korea Peninsular and by experience of Navy's actual torpedo firing. This research contributed to constructing more practical simulation of torpedo firing in real time and the results of this research were used to develop a teamwork training system for the Navy and their education.

Prediction of Fluid-borne Noise Transmission Using AcuSolve and OptiStruct

  • Barton, Michael;Corson, David;Mandal, Dilip;Han, Kyeong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.557-561
    • /
    • 2014
  • In this work, Altair Engineering's vibroacoustic modeling approach is used to simulate the acoustic signature of a simplified automobile in a wind tunnel. The modeling approach relies on a two step procedure involving simulation and extraction of acoustic sources using a high fidelity Computational Fluid Dynamics (CFD) simulation followed by propagation of the acoustic energy within the structure and passenger compartment using a structural dynamics solver. The tools necessary to complete this process are contained within Altair's HyperWorks CAE software suite. The CFD simulations are performed using AcuSolve and the structural simulations are performed using OptiStruct. This vibroacoustics simulation methodology relies on calculation of the acoustic sources from the flow solution computed by AcuSolve. The sources are based on Lighthill's analogy and are sampled directly on the acoustic mesh. Once the acoustic sources have been computed, they are transformed into the frequency domain using a Fast Fourier Transform (FFT) with advanced sampling and are subsequently used in the structural acoustics model. Although this approach does require the CFD solver to have knowledge of the acoustic simulation domain a priori, it avoids modeling errors introduced by evaluation of the acoustic source terms using dissimilar meshes and numerical methods. The aforementioned modeling approach is demonstrated on the Hyundai Simplified Model (HSM) geometry in this work. This geometry contains flow features that are representative of the dominant noise sources in a typical automobile design; namely vortex shedding from the passenger compartment A-pillar and bluff body shedding from the side view mirrors. The geometry also contains a thick poroelastic material on the interior that acts to reduce the acoustic noise. This material is modeled using a Biot material formulation during the structural acoustic simulation. Successful prediction of the acoustic noise within the HSM geometry serves to validate the vibroacoustic modeling approach for automotive applications.

  • PDF

Flow Field Analysis of a Centrifugal Fan (원심형 팬의 유동해석에 관한 연구)

  • Im, Jongsoo;Kim, Changseong;Shin, Dongshin;Rho, Ohyun;Lee, Soogab
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.105-114
    • /
    • 1998
  • Flow field and near-field noise of a centrifugal fan has been studied with an efrcient compressible method and STAR-CD. The flow field of the centrifugal fan is assumed two-dimensional. Most of the compressible studies has been done by inviscid solver because viscous simulation shows little difference. The near field noise is estimated in term s of sound pressure level in frequency domain transformed from the computed pressure fluctuations using FFT. The simulation has been done on various design elements such as impeller blade shapes, the number of blades and cut-off clearance. The comparison shows that the number of blades has a significant effect on near-field noise without losing aerodynamic performance.

  • PDF