• Title/Summary/Keyword: Noise Removing

Search Result 407, Processing Time 0.025 seconds

Preserving and Breakup for the Detailed Representation of Liquid Sheets in Particle-Based Fluid Simulations (입자 기반 유체 시뮬레이션에서 디테일한 액체 시트를 표현하기 위한 보존과 분해 기법)

  • Kim, Jong-Hyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • In this paper, we propose a new method to improve the details of the fluid surface by removing liquid sheets that are over-preserved in particle-based water simulation. A variety of anisotropic approaches have been proposed to address the surface noise problem, one of the chronic problems in particle-based fluid simulation. However, a method of stably expressing the preservation and breakup of the liquid sheet has not been proposed. We propose a new framework that can dynamically add and remove the water particles based on anisotropic kernel and density to simultaneously represent two features of liquid sheet preservation and breakup in particle-based fluid simulations. The proposed technique well represented the characteristics of a fluid sheet that was breakup by removing the excessively preserved liquid sheet in a particle-based fluid simulation approach. As a result, the quality of the liquid sheet was improved without noise.

A study on non-local image denoising method based on noise estimation (노이즈 수준 추정에 기반한 비지역적 영상 디노이징 방법 연구)

  • Lim, Jae Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.518-523
    • /
    • 2017
  • This paper proposes a novel denoising method based on non-local(NL) means. The NL-means algorithm is effective for removing an additive Gaussian noise, but the denoising parameter should be controlled depending on the noise level for proper noise elimination. Therefore, the proposed method optimizes the denoising parameter according to the noise levels. The proposed method consists of two processes: off-line and on-line. In the off-line process, the relations between the noise level and the denoising parameter of the NL-means filter are analyzed. For a given noise level, the various denoising parameters are applied to the NL-means algorithm, and then the qualities of resulting images are quantified using a structural similarity index(SSIM). The parameter with the highest SSIM is chosen as the optimal denoising parameter for the given noise level. In the on-line process, we estimate the noise level for a given noisy image and select the optimal denoising parameter according to the estimated noise level. Finally, NL-means filtering is performed using the selected denoising parameter. As shown in the experimental results, the proposed method accurately estimated the noise level and effectively eliminated noise for various noise levels. The accuracy of noise estimation is 90.0% and the highest Peak Signal-to-noise ratio(PSNR), SSIM value.

Characteristics of a direct system parameter estimation method (시스템 매개변수 직접추정법의 특성)

  • Ju, Young-Ho;Jo, Gwang-Hwan;Lee, Gun-Myung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.9
    • /
    • pp.1480-1490
    • /
    • 1997
  • A method by which the system parameter matrices can be estimated from measured time data of excitation force and acceleration has been studied. The acceleration data are integrated numerically to obtain the velocities and displacements, and the systm parameters are estimated from these data by solving equations of motion. The characteristics of the method have been investigated through its application to simulated data of 1 DOF and 2 DOF systems and experimental data measured from a simple structure. It was found that the method is very sensitive to measurement noise and the accuracy of the estimated parameters can be improved by averaging the repeatedly measured data and removing the noise. One of the main advantages of the parameter estimation method is that no a priori information about the system under test is required. The method can be easily extended to non-linear parameter estimation.

Study on critical point of ZnCdSe by using Fourier analysis (Fourier 변환을 이용한 ZnCdSe 전이점 연구)

  • Yoon, J.J.;Ghong, T.H.;Kim, Y.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.458-462
    • /
    • 2007
  • Spectroscopic ellipsometry is an excellent technique for determining dielectric function. To obtain critical point energy, standard analytic critical point expression is used conventionally for second derivatives of dielectric function which might increase high frequency noise than signal. However, reciprocal-space analysis offers several advantages for determining critical point parameters in optical and other spectra, for example the separation of baseline, information, and high frequency noise in low-, medium-, high-index Fourier coefficient, respectively. We used reciprocal Fourier analysis for removing noise and determining critical point of ZnCdSe alloy.

Rotation-invariant pattern recognition using an optical wavelet circular harmonic matched filter (광웨이브렛 원형고조 정합필터를 이용한 회전불변 패턴인식)

  • 이하운;김철수;김정우;김수중
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.1
    • /
    • pp.132-144
    • /
    • 1997
  • The rotation-invariant pattern recognition filter using circular harmonic function of the wavelet transforme dsreference image by morlet, mexican-hat, and haar wavelt function is proposed. The rotated reference images, the images sililar to the reference image, and the images which are added by random noise are used for the inpt images, and in case of the input images with random noise, they are applied to the recognition after removing the random noise by the transformed moving average method with proper thresholding value and window size. The proposed optical wavelet circular harmonic matched filter (WCHMF) is a type of the matche dfilter, so that it can be applied to the 4f vander lugt optical correlation system. SNR and discrimination capability of the proposed filter are compared with those of the conventional HF, the POCHF, and the BPOCHF. The proper wavelet function for the reference image used in this paper is achieved by applying morlet, mexican-hat, and harr wavelet function ot the proposed filter, and the proposed filter has good SNR and discrimination capability with rotation-invariance in case of the morlet wavelet function.

  • PDF

Noise Reduction Method Using Randomized Unscented Kalman Filter for RGB+D Camera Sensors (랜덤 무향 칼만 필터를 이용한 RGB+D 카메라 센서의 잡음 보정 기법)

  • Kwon, Oh-Seol
    • Journal of Broadcast Engineering
    • /
    • v.25 no.5
    • /
    • pp.808-811
    • /
    • 2020
  • This paper proposes a method to minimize the error of the Kinect camera sensor by using a random undirected Kalman filter. Kinect cameras, which provide RGB values and depth information, cause nonlinear errors in the sensor, causing problems in various applications such as skeleton detection. Conventional methods have tried to remove errors by using various filtering techniques. However, there is a limit to removing nonlinear noise effectively. Therefore, in this paper, a randomized unscented Kalman filter was applied to predict and update the nonlinear noise characteristics, we next tried to enhance a performance of skeleton detection. The experimental results confirmed that the proposed method is superior to the conventional method in quantitative results and reconstructed images on 3D space.

Speech Enhancement Using Multiresolutional Signal Analysis Methods (다해상도 신호해석 방법을 이용한 음성개선)

  • Seok, Jong-Won;Han, Mi-Kyung;Bae, Keun-Sung
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.134-135
    • /
    • 1999
  • This paper presents a speech enhancement method with spectral subtraction using wavelet, wavelet packet and cosine packet transforms which are known as multiresolutional signal analysis method. The performance of each method is compared with the conventional spectral subtraction method. Performance assessments based on average SNR, cepstral distance and informal subjective listening test are carried out. Experimental result demonstrate that cosine packet shows the best result in objective performance measure as well as subjective shows less musical noise than the conventional spectral subtraction method after removing the noise components.

  • PDF

A Study on EEG Artifact Removal Method using Eye tracking Sensor Data (시선 추적 센서 데이터를 활용한 뇌파 잡파 제거 방법에 관한 연구)

  • Yun, Jong-Seob;Kim, Jin-Heon
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1109-1114
    • /
    • 2018
  • Electroencephalogram (EEG) is a tool used to study brain activity caused by external stimuli. In this process, artifacts are mixed and it is easy to distort the signal, so post-processing is necessary to remove it. Independent Component Analysis (ICA) is a widely used method for removing artifact. This method has a disadvantage in that it has excellent performance but some loss of brain wave information. In this paper, we propose a method to reduce EEG information loss by restricting the filter coverage using eye blink information obtained from Eyetracker. We then compared the results of the proposed method with the conventional method using quantization methods such as Signal to Noise Ratio (SNR) and Spectral Coherence (SC).

Modified Median Filter for Image Restoration in Salt and Pepper Noise Environments (Salt and Pepper 잡음 환경에서 영상 복원을 위한 변형된 메디안 필터)

  • Hong, Sang-Woo;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.252-255
    • /
    • 2014
  • Image treatment is becoming mainstream as the demand for image restoration has drastically increased in the digital era. But in the process of acquiring, transmitting and treating video data, the salt and pepper noise damages the image. One of the major methods used for restoring images are SMF(standard median filter), CWMF(center weighted median filter) and SWMF(switching weighted median filter), but these filters all leave a bit to be desired in terms of removing noise and preserving edge. Therefore, a transformed median filter is suggested through the algorithm presented for the restoration of damaged images.

  • PDF

An Improved Guided Image Filtering Technique based on Sobel Operator for Removing Gaussian Noise (가우시안 잡음 제거를 위한 소벨 연산자 기반의 개선된 가이디드 이미지 필터링 기법)

  • Song, Seongmin;Choi, Hyunho;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.104-107
    • /
    • 2018
  • 최근 촬영 기기의 기술발전으로 인해 디지털 영상의 해상도가 증가함에 따라 선명한 디지털 영상에 대한 요구가 증가하고 있다. 이러한 요구에도 불구하고 디지털 영상 내 가우시안 잡음 (gaussian noise)은 촬영기기를 통해 영상 획득 및 처리 과정에서 발생하여 화질을 열화 시킨다. 디지털 이미지에서 발생하는 가우시안 잡음을 제거하기 위해서 기존의 저대역 통과 필터 (low-pass filter: LPF)를 사용하면 잡음은 제거되지만, 블러링 현상 (blurring phenomenon)이 나타난다. 이러한 문제점을 개선하기 위해 소벨 연산자 (sobel operator)를 사용하여 영상 내 에지 맵 (edge-map)을 생성하여 에지 영역과 동질 영역을 구분한다. 에지영역에서는 약한 저역 필터 (weak low-pass filter)를 사용하고, 그 외의 이미지 영역에서는 강한 저역 필터 (strong low-pass filter)를 사용하는 알고리듬을 제안하였다. 그리고 다양한 이미지에 대하여 기존 알고리듬과 제안한 알고리듬의 적용한 결과를 통해 주관적 화질 비교하였고 객관적 지표로 최대 신호 대 잡음비 (peak signal-to noise ratio: PSNR)와 구조 유사성 (structural similarity: SSIM)을 사용하여 성능을 평가하였다. 실험결과를 통해 제안된 알고리듬이 잡음 제거 및 외곽선 보존의 우수함을 확인하였다.

  • PDF