• Title/Summary/Keyword: Noise Reduction Function

Search Result 257, Processing Time 0.025 seconds

Enhancing Medical Images by New Fuzzy Membership Function Median Based Noise Detection and Filtering Technique

  • Elaiyaraja, G.;Kumaratharan, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2197-2204
    • /
    • 2015
  • In recent years, medical image diagnosis has growing significant momentous in the medicinal field. Brain and lung image of patient are distorted with salt and pepper noise is caused by moving the head and chest during scanning process of patients. Reconstruction of these images is a most significant field of diagnostic evaluation and is produced clearly through techniques such as linear or non-linear filtering. However, restored images are produced with smaller amount of noise reduction in the presence of huge magnitude of salt and pepper noises. To eliminate the high density of salt and pepper noises from the reproduction of images, a new efficient fuzzy based median filtering algorithm with a moderate elapsed time is proposed in this paper. Reproduction image results show enhanced performance for the proposed algorithm over other available noise reduction filtering techniques in terms of peak signal -to -noise ratio (PSNR), mean square error (MSE), root mean square error (RMSE), mean absolute error (MAE), image enhancement factor (IMF) and structural similarity (SSIM) value when tested on different medical images like magnetic resonance imaging (MRI) and computer tomography (CT) scan brain image and CT scan lung image. The introduced algorithm is switching filter that recognize the noise pixels and then corrects them by using median filter with fuzzy two-sided π- membership function for extracting the local information.

The Performance Improvement for an Active Noise Contort of Automotive Intake System under Rapidly Accelerated Condition (급가속시 자동차 흡기계의 능동소음제어 성능향상)

  • 이충휘;오재응;이유엽;이정윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.183-189
    • /
    • 2003
  • The study of the automotive noise reduction has been concentrated on the reduction of the automotive engine noise because the engine noise is the major cause of automotive noise. However, many studies of automotive engine noise led to the interest of the noise reduction of the exhaust and intake system. Recently, the active control method is used to reduce the noise of an automotive exhaust and intake system. It is mostly used the LMS(Least-Mean-Square) algorithm as an algorithm of active control because the LMS algorithm can easily obtain the complex transfer function in real-time. Especially, Filtered-X LMS (FXLMS) algorithm is applied to an Active Noise Control system. However, the convergence performance of LMS algorithm went bad when the FXLMS algorithm was applied to an active control of the induction noise under rapidly accelerated driving conditions. So, in order to solve this problem, the modified FXLMS algorithm is proposed. In this study, the improvement of the control performance using the modified FXLMS algorithm under rapidly and suddenly accelerated driving conditions was identified. Also, the performance of an active control using the LMS algorithm under rapidly accelerated driving conditions was evaluated through the theoretical derivation using a chirp signal to have similar characteristics with the induction noise signal.

Performance estimation of the noise reduction by window function on a single tone (단일 신호에 대한 창 함수의 잡음 제거 성능 평가)

  • Baek, Moon-Yeol;Kim, Byoung-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.5
    • /
    • pp.38-43
    • /
    • 1996
  • Windowing routines have as their purpose the reduction of the sidelobes of a spectral output of the FFT or DFT routines. Windowing routines accomplish this by forcing the beginning and end of any sequence to approach each other in value. Since they must work with any sequence they force the beginning and ending samples near zero. To make up for this reduction in power, windowing routines give extra weight to the values near the middle of the sequence. The difference between windows is the way in which they transition from the low weights near the edges to the higher weights neqr the middle of the sequence. Signal-to-noise ratio(SNR) can be determined by the ratio of the output noisy signal variance to the input noisy signal variance of a window. Standard deviation of noise is reduced by windowing. Thus, the windowing operation improved the SNR of the noisy signal. This paper shows a performance estimation of windowing on a single tone with added Gaussian noise and uniform noise.

  • PDF

Transfer Path Analysis and Estimation of the Road Noise for the Driving Vehicle (주행 차량의 로드 노이즈 예측을 위한 각 입력원의 기여도 평가)

  • Yang, In-Hyung;Jeong, Jae-Eun;Yoon, Ji-Hyun;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1071-1077
    • /
    • 2010
  • The reduction of the vehicle interior noise has been the main interest of noise and vibration harshness(NVH) engineers. A passenger vehicle has various and complicated transmission paths of sound and vibration. In order to identify the mechanism of transfer path, estimation of excitation force and exact modeling of transfer path are required. This paper presents method for estimating the noise source contribution on the road noise of the vehicle in a multiple input system where the input sources may be coherent with each other. And vector synthesis technique is employed to identify the characteristics of road noise and its transmission to vehicle compartment through noise and vibration analysis. Vibration reduction efficiency of each transfer path is evaluated by comparing individual vector components obtained virtual simulation.

An Experimental Analysis of the Contributions to the Radiated Noise due to Panel Vibration of a Rotational Machine (회전체 진동으로 인한 판넬 방사소음의 실험적 기여도 분석)

  • 국형석;허승진;고강호
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.2
    • /
    • pp.126-131
    • /
    • 2003
  • This study is concerned with the reduction of noise radiation by an industrial fan unit. First, spectral decomposition method is used to decompose the spectrogram obtained in experiments into source function and noise transfer function, and then major noise generation sources are investigated. Among the noise sources involved in the fan unit. this article is focused on the noise source due to vibration of panels of the unit housing. It is shown here that noise radiation associated with the panel vibration can be as significant in some frequency ranges as that associated with other noise sources such as aeroacoustic fan noise.

The Influence of Design Factors of Sonar Acoustic Window on Transfer Function of Self Noise due to Turbulent Boundary Layer (소나 음향창의 설계 인자가 난류 유동 유기 자체 소음의 전달 함수에 미치는 영향 해석)

  • Shin, Ku-Kyun;Seo, Youngsoo;Kang, Myengwhan;Jeon, Jaejin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.56-64
    • /
    • 2013
  • Turbulent boundary layer noise is already a significant contributor to sonar self noise. For developing acoustic window of sonar system to reduce self noise, a parametric study of design factors of acoustic window is presented. Distance of sensor array from acoustic window, materials of acoustic window and characteristics of damping layer are studied as design factors to influence in the characteristics of the transfer function of self noise. As the result, these design factors make change the characteristics of transfer function slightly. Among design factors the location of sensor array is most important parameter in the self noise reduction

Noise reduction of a high precision gearbox based on experimental study (실험적 방법을 통한 고정밀 감속기의 소음 저감)

  • Lee, Kyu-Ho;Kim, Woo-Hyung;Chung, Jin-Tai
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.266-270
    • /
    • 2006
  • Noise reduction the noise of a high precision multi-stage gearbox applied at the industrial robot is investigated by experiment such as the modal test and the signal analysis. The signal analysis performed with the waterfall plot representing the power spectrum as a function of the rotating speed. An eccentric load is installed at the gearbox in order to organize similar condition used in the industrial robot. Exciting sources are found out by the waterfall plot, and then the main factor to make the noise is distinguish. For the low-noise gearbox, the gear design parameter is modified and this gearbox is experimented in the same procedure. The results of the test show the noise level of gearbox reduced.

  • PDF

Modified Gaussian Filter based on Fuzzy Membership Function for AWGN Removal in Digital Images

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.1
    • /
    • pp.54-60
    • /
    • 2021
  • Various digital devices were supplied throughout the Fourth Industrial Revolution. Accordingly, the importance of data processing has increased. Data processing significantly affects equipment reliability. Thus, the importance of data processing has increased, and various studies have been conducted on this topic. This study proposes a modified Gaussian filter algorithm based on a fuzzy membership function. The proposed algorithm calculates the Gaussian filter weight considering the standard deviation of the filtering mask and computes an estimate according to the fuzzy membership function. The final output is calculated by adding or subtracting the Gaussian filter output and estimate. To evaluate the proposed algorithm, simulations were conducted using existing additive white Gaussian noise removal algorithms. The proposed algorithm was then analyzed by comparing the peak signal-to-noise ratio and differential image. The simulation results show that the proposed algorithm has superior noise reduction performance and improved performance compared to the existing method.

Noise Suppression Using Normalized Time-Frequency Bin Average and Modified Gain Function for Speech Enhancement in Nonstationary Noisy Environments

  • Lee, Soo-Jeong;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1E
    • /
    • pp.1-10
    • /
    • 2008
  • A noise suppression algorithm is proposed for nonstationary noisy environments. The proposed algorithm is different from the conventional approaches such as the spectral subtraction algorithm and the minimum statistics noise estimation algorithm in that it classifies speech and noise signals in time-frequency bins. It calculates the ratio of the variance of the noisy power spectrum in time-frequency bins to its normalized time-frequency average. If the ratio is greater than an adaptive threshold, speech is considered to be present. Our adaptive algorithm tracks the threshold and controls the trade-off between residual noise and distortion. The estimated clean speech power spectrum is obtained by a modified gain function and the updated noisy power spectrum of the time-frequency bin. This new algorithm has the advantages of simplicity and light computational load for estimating the noise. This algorithm reduces the residual noise significantly, and is superior to the conventional methods.

An Adaptive Wind Noise Reduction Method Based on a priori SNR Estimation for Speech Eenhancement (음성 강화를 위한 a priori SNR 추정기반 적응 바람소리 저감 방법)

  • Seo, Ji-Hun;Lee, Seok-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1756-1760
    • /
    • 2015
  • This paper focuses on a priori signal to noise ratio (SNR) estimation method for the speech enhancement. There are many researches for speech enhancement with several ambient noise cancellation methods. The method based on spectral subtraction (SS) which is widely used in noise reduction has a trade-off between the performance and the distortion of the signals. So the need of adaptive method like an estimated a priori SNR being able to making a high performance and low distortion is increasing. The decision directed (DD) approach is used to determine a priori SNR in noisy speech signals. A priori SNR is estimated by using only the magnitude components and consequently follows a posteriori SNR with one frame delay. We propose a modified a priori SNR estimator and the weighted rational transfer function for speech enhancement with wind noises. The experimental result shows the performance of our proposed estimator is better Perceptual Evaluation of Speech Quality scores (PESQ, ITU-T P.862) compare to the conventional DD approach-based systems and different noise reduction methods.